novomarusino.ru

Сборка типовых соединений и передач. Сборка типовых сопряжении

Лекция № 7 Сборка типовых соединений, узлов, автомобиля

МЕТОДЫ ДОСТИЖЕНИЯ ТОЧНОСТИ сборки

В машиностроительной промышленности сборку производят методами полной взаимозаменяемости, неполной взаимозаменяемости, групповой взаимозаменяемости, пригонки и регулирования.

При полной взаимозаменяемости точность сборки достигается без подбора или пригонки любых взятых из партии сопряженных деталей. Для ее осуществления необходима обработка деталей с высокой точностью, т.к. точность сборки изделия при этом методе зависит только от точности собираемых деталей.

Например, точность сборки коренных и шатунных подшипников коленчатого вала двигателя определяется величинами допусков размеров на диаметр гнезда под вкладыши, на толщину вкладышей и диаметр шейки вала. Для двигателей ЗМЗ, УАЗ зазор в коренных подшипниках должен быть в пределах 0,036…0,079 мм, допуск зазора 0,043 мм, размер гнезд в блоке цилиндров под вкладыши 68,500…68,518 мм, допуск 0,018 мм; толщина вкладышей 2,232…2,226 мм, допуск 0,006 мм; диаметр коренных шеек коленчатого вала 64,00…63,987 мм, допуск 0,013 мм.

Сборка данного соединения методом полной взаимозаменяемости без подбора, выбора и подгонки деталей обеспечивает требуемую точность сборки подшипников двигателя, так как допуск 0,018+2*0,006+0,013=0,043 мм.

Метод наиболее целесообразно применять в крупносерийном и массовом производствах для двухзвенных размерных цепей (например, в сопряжениях вал - втулка, вал - подшипник). Для многозвенных цепей этот метод трудоемок и экономически нецелесообразен.

Метод неполной взаимозаменяемости состоит в том, что требуемая точность сборки достигается не у всех объектов. Т.е. в отличие от полной взаимозаменяемости устанавливаются более широкие допуски (дешевле) на все детали сборочной размерной цепи. При этом методе сборки часть узлов не будет удовлетворять установленной точности и их придется разбирать и собирать повторно.

В этом случае дополнительные затраты на выполнение разборочно-сборочных работ значительно меньше затрат на изготовление сопрягаемых деталей с более узкими допусками, обеспечивающими получение требуемой точности сборки у всех соединений.

Сборка по этому методу целесообразна в серийном и массовом производствах для многозвенных размерных цепей.

Метод групповой взаимозаменяемости (селективной сборки ) заключается в том, что детали изготавливают с увеличенными полями допусков. Перед сборкой сопрягаемые детали сортируют на размерные группы с одинаковыми допусками. В пределах каждой размерной группы требуемая точность сборки достигается методом полной взаимозаменяемости.

Метод обеспечивает достижение наиболее высокой точности при низких затратах, он применяется при сборке точных (прецизионных) сопряжений: (плунжерные пары, шатунно-поршневые группы и т.п.)

Например, для двигателей необходим допуск посадки поршневого пальца (допуск наружного диаметра 0,010 мм) в бобышках поршня и во втулке верхней головки шатуна (допуск отверстий 0,010 мм), равный 0,005 мм. Сборка указанных соединений методом полной взаимозаменяемости обеспечит допуск 0,010+0,010=0,020 мм, что недопустимо. В этом случае допуск посадки будет в 4 раза шире необходимого. Поэтому для достижения требуемого допуска посадки 0,005 мм сопрягаемые детали сортируют на четыре размерные группы с допуском 0,0025 мм в каждой (табл.).

Сущность метода регулирования заключается в том, что требуемая точность сборки достигается изменением компенсирующего звена (на рис. - К) без снятия слоя металла.

Например, требуемая точность осевого зазора (натяга) в соединении с коническими подшипниками качения (дифференциал, главная передача, механизм рулевого управления и др.) обеспечивается изменением толщины неподвижного компенсатора (группа колец, прокладок, регулировочных шайб и т.п.), а точность зазора между торцом клапана и болтом толкателя достигается путем изменения положения подвижного компенсатора - регулировочного болта в осевом направлении.

Метод пригонки состоит в том, что требуемая точность сборки достигается изменением компенсирующего звена путем снятия слоя металла.

Основными слесарно-пригоночными работами являются опиливание, обработка отверстий по месту, полирование, притирка и др. Пригонка (притирка клапана к седлу, плунжерной пары топливной аппаратуры, приработка ведущей и ведомой шестерен главной передачи) производится в процессе обработки резанием, и детали поступают на сборку спаренными.

Метод применяется в единичном и мелкосерийном производствах.

ВИДЫ СБОРОЧНЫХ СОЕДИНЕНИЙ

Соединения деталей в зависимости от характера разделяются на подвижные и неподвижные, а в зависимости от возможности разборки - на разъемные и неразъемные.

Подвижные разъемные: поршень - цилиндр, зубчатые и некоторые шлицевые соединения. Подвижные неразъемные: радиальные шариковые подшипники. Неподвижные разъемные: резьбовые, шпоночные, конусные и др. Неподвижные неразъемные: заклепочные, соединения сваркой, запрессовкой, пайкой, склейкой и т.п.

Разъемные соединения разбираются без повреждений деталей.

Неразъемные соединения не могут быть разобраны без повреждений деталей.

К неподвижным разъемным соединениям относятся резьбовые, шпоночные и шлицевые, выполненные с переходными посадками и посадками на конус, а также штифтовые соединения.

Детали подвижных соединений при работе могут перемещаться друг относительно друга.

В резьбовых соединениях обычно используются шпильки, болты и винты и гайки.

Шпильки применяют при непосредственном соединении плоских поверхностей или при соединении поверхностей с помощью прокладок, причем этому предшествует ввертывание шпилек в базовую деталь.

Болты применяют, когда отверстия в сопрягаемых деталях сквозные.

Винты необходимы тогда, когда резьбовое соединение в процессе эксплуатации часто разбирается. Поэтому резьба для винтовых соединений выполняется менее плотной, чем в резьбовых соединениях шпильками.

Самоформирующие винты (исключающие применение гаек) предназначены для крепления деталей без предварительного сверления.

Самоформирующие винты делятся на самонарезающие (образуют резьбу нарезанием с удалением материала) и самовыдавливающие (образуют резьбу в отверстии накатыванием без удаления стружки). Если винт завинчивают в латунь, алюминий, пластмассы, то смазки не требуется, в сталь - необходима смачка минеральным маслом, в чугун - керосином.

При выполнении резьбовых соединений широко используются гайковерты, которые бывают одно- и многошпиндельными (до 20). Многошпиндельные гайковерты позволяют завертывать одновременно несколько гаек (при установке колес). При затягивании резьбовых соединений для обеспечения заданного крутящего момента применяют различные тарированные ключи, рассчитанные на автоматическое выключение при достижении заданной силы затяжки, а также динамометрические ключи, контролирующие силу затяжки с помощью специальных указателей. Наиболее точно затяжку резьбовых соединений можно контролировать по изменению удлинения болта или шпильки под действием затяжки. Удлинение измеряется микрометром или индикатором.

В шпоночных соединениях используются клиновые, призматические и сегментные шпонки.

При сборке с помощью клиновой шпонки ось охватывающей детали смещена относительно оси вала. Это смещение является причиной радиального биения охватывающей детали.

В соединениях с призматическими или сегментными шпонками сборка шпонки с валом производится с натягом, шпонка запрессовывается в паз вала при помощи пресса или винтовыми струбцинами.

При сборке шпоночных соединений особое внимание необходимо обратить на точность подгонки шпонок по боковым поверхностям и зазору по наружной поверхности. Так как через торцы шпонок передаются крутящие моменты от одной детали к другой, они должны быть очень точно пригнаны по шпоночному пазу сопряженной детали. При неточной пригонке резко возрастает давление в шпоночном соединении и торцы шпонки и шпоночные пазы сминаются. В шпоночном соединении образуется постепенно увеличивающийся зазор, и это разбивает соединение.

Шлицевые неподвижные соединения выполняют с различными посадками центрирующих элементов и бывают туго- и легкоразъемными. Тугоразъемное шлицевое соединение выполняют с нагревом охватывающей детали до 80-120°С. Нагрев уменьшает усилие напрессовки и, следовательно, обеспечивает более правильную посадку. При сборке легкоразъемных шлицевых соединений больших усилий напрессовки не требуется.

Шлицевые подвижные соединения в автомобилях могут быть прямобочными, эвольвентными и треугольными. Наибольшее распространение получили прямобочные шлицевые соединения, при сборке которых центрирование охватывающей детали может быть выполнено по наружному диаметру выступов охватываемой детали (вала), по внутреннему диаметру впадин вала и по боковым сторонам шлиц.

При центрировании по наружному диаметру выступов вала его шлифуют по наружному диаметру шлицев. При центрировании по внутреннему диаметру впадин вала шлифуют отверстие детали (наиболее дорогое). Центрирование по боковым сторонам применяется в том случае, если на валу более 10 шлицев. На автомобилях чаще всего применяется первый тип шлицевого соединения.

Штифтовые соединения выполняются при помощи конических и цилиндрических штифтов. Кроме соединения, штифты используются также для обеспечения необходимого взаимного положения собираемых деталей.

Зубчатые колеса насаживают на посадочные шейки валов с небольшим зазором или натягом вручную или при помощи специальных приспособлений.

Зубчатые передачи с цилиндрической зубчатой парой после установки колес на валы проверяют по боковому зазору и пятну контакта.

Расположение пятна контакта проверяют по отпечатку краски.

Боковой зазор измеряют щупом или при помощи индикаторного приспособления (рис.) путем поворота на некоторый угол одного зубчатого колеса при неподвижном другом. При сборке зубчатых зацеплений с большим модулем боковой зазор можно определять с помощью свинцовой пластины, прокатив ее между зубьями, а затем измерив микрометром ее толщину.

Верхнюю шестерню 2 стопорят, ножку индикатора 4 устанавливают перпендикулярно хомутику 3 и проворачивая зубчатое колесо 1, фиксируют отклонение индикатора.

Боковой зазор определяют по формуле

где - диаметр начальной окружности зубчатого колеса, мм;

Длина плеча, мм;

Показания индикатора, мм.

Зубчатые передачи с конической или гипоидной зубчатой парой оценивают по пятну контакта зубьев, боковому зазору и уровню шума.

Правильность расположения пятна контакта достигается путем взаимного перемещения зубчатых колес вдоль оси вращения.

Боковой зазор измеряют с помощью индикаторного приспособления, которое закрепляют на картере. Регулируют зазор перемещением зубчатых колес и установкой прокладок.

Уровень шума проверяют на стенде, он не должен превышать 50...70 дБ.

При проверке пятна контакта зубьев «на краску» рабочие поверхности шестерни покрывают краской и несколько раз проворачивают зубчатые колеса в разные стороны. О контакте рабочих поверхностей зубьев судят по форме и расположению отпечатка (рис.).

Подшипники качения напрессовывают на вал или запрессовывают в корпус с помощью пресса или винтовых приспособлений, избегая ударов.

Для этого используют подкладные кольца (рис. а) и монтажные трубы (рис. б). При запрессовке подшипника в корпус с одновременной напрессовкой его на шейку вала применяют специальную оправку (рис. в).

В сборочном узле с вращающимся валом и неподвижным корпусом внутреннее кольцо подшипника должно иметь посадку с натягом, а наружное - с зазором.

При неподвижном вале и вращающемся корпусе внутреннее кольцо устанавливают с зазором, а наружное - с натягом

Зазор необходим для удобства демонтажа подшипника и возможности провертывания кольца, что обеспечивает более ровный износ кольца и посадочной поверхности детали.

При запрессовке подшипника качения размер его колец изменяется: диаметр внутреннего кольца увеличивается, а наружного уменьшается. При запрессовке подшипников необходимо пользоваться оправками и следить, чтобы усилие запрессовки передавалось на запрессовываемое кольцо.

Регулировку радиального зазора в коническом роликовом подшипнике осуществляют смещением наружного или внутреннего кольца в осевом направлении регулировочным винтом или гайкой или подбором соответствующего комплекта прокладок.

Неразъемные подшипники скольжения (втулки) запрессовывают в гнезда, а затем растачивают или развертывают под диаметр шеек сопряженных валов. Втулки запрессовывают на гидравлических и механических прессах.

При сборке цепных и ременных передач линейкой контролируют их натяжение по величине стрелы провисания нерабочей ветви. Звездочки и шкивы передач должны находиться в одной плоскости, что проверяют, прикладывая к торцам стальную линейку или натягивая струну (леску).

Конусные соединения собирают таким образом, чтобы обеспечивалось плотное прилегание конусных поверхностей. Это достигается развертыванием отверстия конусной разверткой или притиркой поверхностей пастой. Проверку притирки производят по цвету притираемых поверхностей (поверхность должна быть ровной и матовой). Чтобы конусное соединение работало надежно, оно должно собираться с натягом. Без натяга конусное соединение быстро разрабатывается.

Соединения с гарантированным натягом выполняют с применением прессовых посадок или теплового воздействия на собираемые детали.

При запрессовке используются гидравлические прессы, домкраты, струбцины.

Если условия работы сопрягаемых деталей тяжелые, то сборку осуществляют путем теплового воздействия на них. Нагрев деталей осуществляют в кипящей воде, в горячем масле, газовыми горелками, в печах и т.д. Прочность посадки при этом в 2…3 раза превышает прочность обычных прессовых посадок. При осуществлении посадки тепловым воздействием на сопрягаемые детали микронеровности сцепляются (происходит затекание металла одной из деталей в углубления другой), а не сглаживаются, как это имеет место, при обычных соединениях. Примером посадок является соединение заготовок зубчатого венца с маховиком двигателя, подшипника качения с валом и др. Прессовое оборудование выбирают по расчетной силе запрессовки с коэффициентом запаса 1,5...2. Рекомендуется при запрессовке смазывать поверхности машинным маслом для предотвращения задиров, при этом смазка не должна способствовать взаимному перемещению деталей при работе соединений.

При соединении деталей методом охлаждения охватываемую деталь охлаждают до температуры 200 К в сухом льду (твердая углекислота) или до температуры 83...77 К в жидком азоте. Использование для этих целей жидкого кислорода или воздуха не рекомендуется из-за их взрывоопасности. Охлаждение успешно применяют при посадке штифтов, осей и длинномерных втулок с тонкими стенками. Запрессовка таких деталей прессом невозможна вследствие их деформации.

При посадке деталей со значительными натягами производят одновременный нагрев охватывающей детали и охлаждение охватываемой .

В некоторых случаях для соединения стального вала с деталями типа кулачков, эксцентриков, зубчатых колес и т.п. посадочные поверхности сопрягаемых деталей покрывают тонким слоем металлического припоя, заполненного твердыми частицами, например, корунда с последующей посадкой детали при помощи разогрева или охлаждения . При этом достигается высокая прочность неразборного соединения. Таким образом можно соединить вал с шестерней. При этом шестерню нагревают до 473...523 К и осуществляют посадку на вал с последующим охлаждением.

Развальцовывание применяется в том случае, когда требуется обеспечить плотное и герметичное соединение деталей. Оно выполняется специальным инструментом - развальцовкой путем пластического деформирования одной из сопрягаемых деталей. Развальцовывание осуществляется на сверлильных станках и специальных установках. Этот вид соединения применяется в трубопроводах тормозной системы и смазки двигателя.

Клепаные (на заклепках) соединения используются в конструкциях, которые подвергаются воздействию высоких температур и коррозии, испытывающих ударные и вибрационные нагрузки. Для клепки применяются пневмо- и электроклепальные молотки.

Материалом для заклепок чаще всего служит проволока из стали 10 и из алюминиевых сплавов Д18 и В65. Прочность клепаного соединения зависит от материала заклепок, их термической обработки и диаметра отверстия под заклепку.

Клепальные работы производятся при сборке или ремонте рам автомобилей, кожухов полуосей задних мостов, дифференциалов, дисков сцеплений и т.д.

Сварные соединения применяется для уменьшения числа заклепочных соединений (экономит материал и снижает трудоемкость). Точечную электросварку (рис.) применяют при изготовлении и ремонте кузовов и кабин.

При сварке плавлением металл в зоне сварки расплавляется и переходит в жидкое состояние, соединение возникает за счет самопроизвольного слияния и взаиморастворения металла соединяемых частей.

При сварке давлением металлы совместно сжимаются и деформируются. Приложенное усилие (ковка, давление, удар) вызывает течение металла вдоль поверхности раздела и его перемешивание, разрушает поверхностные слои металла, выводит на поверхность свежие (не бывшие в соприкосновении с атмосферой) слои металла, сближает соединяемые поверхности и способствует соприкосновению их атомов. Сопутствующий нагрев ослабляет связи между атомами, делает их более подвижными, снижает твердость металла и повышает его пластичность.

Пайка в автомобилестроении используется для устранения обнаруженных дефектов (например, течи в трубках радиатора).

Между соединяемыми частями изделия вводится расплавляемый металл-припой, который плавится при более низкой температуре, чем соединяемые металлы. Припой в жидком виде заполняет зазор между поверхностями соединяемых деталей под действием капиллярных сил, а застывая, кристаллизуется, образуя прочные связи.

Метод склеивания сопрягаемых поверхностей. Его эффективность часто выше свинчивания, клепки, сварки. Клеевые соединения обеспечивают высокую прочность, снижают массу, позволяют получить гладкую поверхность изделий и в ряде случаев дают возможность сочетать крепление с герметизацией. Возможно сочетание склеивания с контактной сваркой. Клеевые соединения вал-втулка работоспособны в большинстве узлов машин, где применяют посадку зубчатых колес или шкивов на вал.

В массовом машиностроительном производстве применяют клеи на основе эпоксидных, силиконовых, полиуретановых смол и др.

Склеиванию присущи и определенные недостатки: небольшая прочность при отрыве, склонность к старению, необходимость применения сложного, оборудования и комплекса дорогостоящей высокоточной оснастки.

Последовательность СБОРКи Грузового АВТОМОБИЛя

На первом посту сборочного конвейера на раму в перевернутом положении устанавливают передний и задний мосты в сборе с рессорами, а также амортизаторы передней подвески и тормозную систему. Монтируют карданную передачу и закрепляют на раме глушитель.

После установки на переднюю и заднюю части рамы кантователя подсобранное шасси поднимают, переворачивают и опускают на конвейер.

Сборку продолжают креплением к раме буксирного приспособления. Заполнив тормозную систему сжатым воздухом от заводской сети, проверяют герметичность соединений.

Устанавливают на раме двигатель в сборе с коробкой передач, радиатор. В картер заднего моста и коробки передач заливают трансмиссионное масло и через пресс-масленки заполняют маслом все подвижные сопряжения шасси автомобиля.

Завершающей операцией сборки автомобиля является установка колес и кабины в сборе с арматурой, электрооборудованием, отопителем, облицовкой радиатора, крыльями, подножками и колонкой рулевого механизма.

Средства механизации сборочных работ

При сборке для облегчения труда и повышения производительности применяют различные средства механизации сборочных работ.

По типу привода инструмент делится на пневматический, гидравлический и электрический.

По принципу действия механизированный инструмент делится на следующие группы:

Ударного действия - клепальные молотки, кернеры;

Вращательного действия - дрели, шлифовальные машины, гайковерты, отвертки.

Приспособления, применяемые при сборке, подразделяются на следующие виды:

Для установки и соединения деталей - подставки с призмами для сборки деталей на валу, поворотные столы для монтажа деталей и др.;

Для напрессовки зубчатых колес, шкивов, подшипников и т.д.;

Контрольные приспособления и стенды для проверки качества сборки и определения действительных эксплуатационных характеристик сборочного узла или автомобиля.

В качестве подъемно-транспортных средств используются мостовые краны, электрические и гидравлические подъемники.

Подъемники устанавливают на кран-балках, поворотных и передвижных консольных кранах.

Транспортировка деталей и узлов осуществляется с помощью электрокар и рольгангов.

Для общей сборки автомобилей используются конвейеры.

4.1. Способы сборки узлов и соединений

В процессе сборки узлов важным является обеспечение соответствующей точности сборки, т.е. обеспечение требуемых сопряжений, зазоров, натягов.

Требуемую точность можно обеспечить:

· применением карт измерений сопрягаемых поверхностей;

· пригонкой;

· применением компенсаторов;

· макетной сборкой.

Карты измерений, как правило, составляются при сборке узлов, содержащих стандартные или унифицированные детали. Особенно это касается сборки сдвоенных подшипников качения, когда должна быть обеспечена минимальная разница диаметров внешних колец в пределах существующих допусков.

В этом случае должна быть обеспечена высокая точность измерений.

При использовании пригонки точность сборки достигается путем пригонки одного из заранее намеченного для этой цели звена. Все остальные звенья при этом изготавливают с допусками, экономически приемлемыми для определенных производственных условий.

Для компенсации погрешностей, полученных при обработке сопрягаемых деталей, и при их сборке во многих случаях используют компенсаторы. Компенсаторы подразделяются на неподвижные (прокладки, шайбы, кольца, слой самотвердеющей пластмассы и др.) и подвижные (клинья, втулки, пружины, эксцентрики, регулировочные винты и т.д.).

Этот способ широко используется при сборке зубчатых и червячных передач.

При сборке крупногабаритных изделий иногда используется макетная сборка. Например, при соединении штанги с большим конусом доменной печи требуется высокая плотность сопряжения поверхностей клина с конусом и штангой. В этом случае изготавливается макет соединения конуса и штанги и на нем осуществляется подгонка поверхностей клина.

На макетах осуществляется подгонка криволинейных участков трубопроводов циркуляционных смазочных систем, монтируемых в подвальных помещениях.

4.2. Сборка резьбовых соединений

Резьбовые соединения в конструкциях машин составляют 15-25 % от общего количества соединений. Сборка их в процессе монтажа оборудования (крепление крышек, полумуфт) в большинстве случаев выполняется вручную из-за отсутствия механизированного инструмента или невозможности его применения. Эти операции являются наиболее трудоемкими и в то же время требуют высокой квалификации рабочего, чтобы обеспечить необходимое усилие затяжки. Примерно 80 % энергии, расходуемой на весь процесс завинчивания, затрачивается на преодоление сил трения и около 20 % на затяжку. Поэтому необходима разработка способов, обеспечивающих значительное снижение трудозатрат на затяжку болтовых соединений, особенно при монтаже металлургических машин, где используются болты с резьбой от М10 до М400. Затяжка болтов может осуществляться двумя способами:

1) удлинение болта на величину, обеспечивающую необходимое усилие, и затем довинчивание гайки на эту величину;

2) довинчивание гайки, обеспечивающее необходимое усилие затяжки, с использованием механизированного инструмента.

На работоспособность болтового соединения решающее влияние оказывает правильно выбранное усилие затяжки.

Сила предварительной затяжки может быть найдена из выражения:

К - коэффициент, равный 0,75-1,0 и зависящий от конструктивных особенностей соединения;

E 1 , Е 2 - модуль упругости материала болта и соединяемых деталей соответственно, МПа;

F 1 , F 2 - поперечные сечения болта и детали (условного цилиндра), м².

При затяжке резьбового соединения вращением гайки необходимое усилие Р кл , приложенное к гаечному ключунарасстоянии L кл от оси вращения, можно определять из зависимости

(4.2)

где d - наружный диаметр резьбы.

Необходимая величина затяжки может быть достигнута поворотом на определенный угол j гайки после соприкосновения стыковых плоскостей соединения.

(4.3)

где L - длина болта или шпильки между опорными плоскостями, м;

S -шаг резьбы, м;

Е 1 ,E 2 - модули упругости материала соответственно болта и детали, МПа;

F 1 , F 2 - площади сечения болта и скрепляемых деталей, м².

Затяжку резьбового соединения можно также контролировать, измеряя удлинение болта

(4.4)

Напряжение растяжения в болте в этом случае не должно превышать 0,5-0,7 предела текучести материала.

При монтаже стяжных болтов (соединение станин прокатных клетей, мощных прессов и других машин), имеющих значительные диаметры резьбы, при затяжке требуются большие крутящие моменты на ключе. В ряде случаев создание таких моментов представляет значительные трудности. В распоряжении монтажных организаций имеется гидравлический ключ УБС-200, рассчитанный на затяжку болтов диаметром до 200 мм.Существует способ затяжки резьбовых соединений, основанный на растягивании болта гидроцилиндром с захватом за дополнительную гайку, установленную на болте. В этом случае основная гайка должна находиться под небольшим натягом.

После растяжения болта основная гайка должна быть повернута на угол j, рассчитанный по зависимости (4.3). Но по конструктивным или технологическим условиям часто не может быть использован гидравлический принцип растягивания болта. Тогда применяют термический способ затяжки. Требуемая сила затяжки Р заm обеспечивается удлинением болта после предварительного нагрева на величину l t =l зат.

Температура подогрева может быть определена из следующего соотношения:

где a -коэффициент линейного расширения материала болта;

L н - длина нагрева болта.

Контролируют нагрев измерением удлинения болта. После нагрева гайку поворачивают до соприкосновения с деталью.

4.3. Сборка соединений с гарантированным натягом

В металлургических машинах соединения с гарантированным натягом имеют большое распространение: соединение полумуфты с валом, подшипника качения с валом, ступицы зубчатого колеса с валом, зубчатого венца со ступицей и т.д.

По способу получения нормальных напряжений на сопрягаемых поверхностях соединения с гарантированным натягом условно делят на поперечно-прессовые и продольно-прессовые.

В поперечно-прессовых соединениях сближение сопрягаемых поверхностей происходит радиально или нормально к поверхности. Такие соединения осуществляют одним из следующих способов:

Нагреванием охватывающей делали перед сборкой;

Охлаждением охватываемой детали;

Путем пластической деформации (например, развальцовки);

Приданием упругости охватываемой детали;

При использовании материалов, обладающих "памятью" формы.

При продольно-прессовом соединении охватываемая деталь под действием прикладываемых вдоль оси сил запрессовывается в охватываемую деталь с натягом.

Сборку с нагревом охватывающей детали осуществляют тогда, когда в соединении предусмотрены значительные натяги.

Минимальная температура после нагрева для стальных деталей:

где d - диаметр отверстия, мм;

t н - начальная температура детали, °C;

a - коэффициент, равный 1,15-1,3, компенсирующий частичное охлаждение детали в процессе ее установки перед запрессовкой;

i - натяг, мм;

a - необходимый свободный зазор, мм;

«+» - нагрев;

«-» - охлаждение.

При сборке продольно-прессового соединения с гарантированным натягом наибольшая сила запрессовки P может быть найдена по формуле:

P = f зап p d L, (4.7)

где f зап - коэффициент трения при запрессовке;

Контурное давление на поверхности контакта, МПа;

d - диаметр охватываемой детали, м;

L - длина запрессовки, м.

Контурное давление на поверхности контакта можно определить по формуле:

(4.8)

где d - расчетный натяг, мкм;

Е 1 , E 2 - модули упругости охватываемой и охватывающей детали соответственно, МПа;

C 1 =0,7 - для сплошного стального вала;

C 2 - для охватывающей детали:

где D - наружный диметр охватывающей детали, м;

d - внутренний диаметр детали, м;

m 2 - коэффициент Пуассона, для стали - 0,3, чугуна - 0,25, бронзы – 0,33.

Коэффициент трения при запрессовке колеблется в широких пределах от 0,05 до 0,25 (меньшие значения со смазочным материалом).

При гидропрессовом способе с целью уменьшения усилия запрессовки на контактную поверхность между сопрягаемыми деталями подается масло под давлением, обеспечивающем разделение контактирующих поверхностей слоем смазочного материала (рис.4.1).

Рис. 4.1. Схема запрессовки путем нагнетания масла

Охватываемая деталь делается с разными посадками по длине запрессовки, чтобы обеспечить незначительный натяг в начале ее и за счет этого создать необходимое давление масла на поверхности контакта.

4.4. Сборка узлов с подшипниками качения

Основные требования, предъявляемые к собираемым узлам:

Тщательная промывка;

Точная сборка и регулировка радиальных зазоров.

От качества выполнения посадки подшипников на вал или в корпус зависят долговечность и надежность работы машины. Сборка подшипниковых узлов может осуществляться различными способами:

С помощью ручных, пневматических или гидравлических прессов;

Подогревом подшипников в горячем минеральном масле;

Охлаждением вала с применением твердой углекислоты;

Индукционным нагревом.

Работоспособность подшипников обеспечивается при точном соблюдении радиальных зазоров. На сборке, вследствие затруднения измерения радиальных зазоров, чаще всего измеряют и контролируют осевой зазор, т.е. осевое перемещение вала с напрессованным внутренним кольцом относительно внешнего кольца подшипника. Особое внимание необходимо уделять контролю осевых зазоров в регулируемых подшипниках. Регулировка осевых зазоров подшипников в узлах металлургических машин, как правило, осуществляется подбором необходимого комплекта прокладок, обеспечивающих заданный осевой зазор. Порядок регулировки следующий:

Установка торцевой крышки (рис. 4.2) до упора в торец наружного кольца подшипника и закрепление ее равномерно винтами так, чтобы выбрать осевой зазор в подшипнике (туго проворачивается вал);

Измерение щупом зазора К в нескольких местах по окружности между торцевыми поверхностями крышки и корпуса;

Определение толщины комплекта регулировочных прокладок по формуле:

где К ср - средний зазор между крышкой и торцевой поверхностью корпуса, мм;

С - осевой зазор подшипника, мм;

Установка рассчитанного комплекта регулировочных прокладок, затягивание винтов и проверка вращения вала (оно должно быть свободным).

Рис. 4.2. Регулировка конического роликоподшипника

4.5. Сборка подшипников скольжения

Сборка разъемных подшипников скольжения включает установку вкладышей в корпус и крышку, шабрение вкладышей по валу, для обеспечения диаметральных зазоров, и соответствующей поверхности контакта.

Резьбовые соединения являются наиболее распространенным видом разъемного соединения. Трудоемкость сборки резьбовых соединений составляет 25-40% общей трудоемкости сборочных работ. Наиболее часто применяемые резьбовые соединения:

  • винтовые;
  • болтовые;
  • шпилечные.

1. Сборка и разборка болтовых соединений

1.1. Подготовка к сборке

Сборку болтового соединения начинают с подготовки поверхностей, по которым соединяются детали. Для создания герметичности иногда плоскости пришабривают или притирают. Следует учесть, что герметичность стыка увеличивается в 2-2,5 раза при повторной сборке соединения. Величина зазора между плоскостями разъема должна быть указана в чертежах. Кованые или литые детали должны иметь обработанные поверхности под устанавливаемые крепежные детали.

1.2. Сборка болтовых соединений

Наиболее распространенный тип болтового соединения – соединение, собранное на болтах или винтах. При подготовке соединения к сборке необходимо проверить, что в собираемом соединении крепежных деталей с метрической резьбой (табл. 1) обеспечены запас резьбы, глубина сверления и выход конца винта из гайки с метрической резьбой в соответствии с табл. 1.

Таблица 1. Запас резьбы, глубины сверления и выход конца винта из гайки с метрической резьбой, мм, для крепежных деталей с метрической резьбой (значения эмпирические)

Шаг резьбы d ≥ а1 ≥ а2

(без сбега)

≥ а 3 а 4 с
1,0 6 3,5 2 6 1,5÷2,5 1,0
1,25 8 4 2,5 8 1,5÷2,5 1,6
1,5 10 4,5 3 9 2÷3
1,75 12 5,5 3,5 11 2÷3,5
2,0 16 6 4 12 2,5÷4 2
2,5 18, 20, 22 7 5 15 2,5÷5 2,5
3,0 24, 27 8 6 18 3÷6
3,5 30, 32 10 7 21 3,5÷7
4,0 36, 39 12 8 24 4÷8 3
4,5 42, 45 12 9 27 4,5÷9 4
5,0 48, 52 15 10 30 5÷10 5
Глубина завинчивания винтов, а = K p d
σ В, МПа Сталь, бронза Чугун Силумин
K p
400-500 0,8-0,9 1,3-1,4 1,4-2,0

Резьба болта или винта должна быть чистой от грязи, без забоин и слегка смазанной. Болт обычно вставляют снизу, а затем навинчивают гайку. Гайки затягивают только тогда, когда поставлены все болты, шайбы и гайки.

Затягивают гайки или винты постепенно. На длинных крышках, например на крышках блоков двигателей внутреннего сгорания, на крышках больших редукторов, гайки или винты затягивают от середины к краям. Гайки или винты, расположенные по кругу, например на фланцах крышек цилиндров и т. д., затягивают крест-накрест. Сначала все гайки или винты завертывают до соприкосновения с шайбами или с поверхностью детали, затем слегка затягивают и только в третий раз затягивают окончательно.

Если гайки или винты затягивать последовательно, то затяжка может оказаться неравномерной и вызвать перегрузку отдельных гаек, смятие резьбы и даже обрыв болта. Затягивание гаек от краев к середине приводит к искривлению крышек.

Контроль усилия затяжки винтов и болтов осуществляют либо выбором соответствующей длины рукоятки ключа, либо применением предельных и динамометрических ключей.

Для затяжки крепежного резьбового соединения осевой силой F (рис. 1) необходимо создать момент завинчивания Мзав, равный сумме момента сил в резьбе d и момента сил трения на опорной поверхности гайки.

Рис. 1.

Длина стандартных ключей L ≈ 15d. Приложив к концу ключа силу Fp, можно определить отношение F/Fp, т. е. выигрыш в силе за счет резьбы. Так как Мзав=FpL, то 0,2Fd=15Fpd, откуда F/Fp ≈ 75.

Таблица 2. Допускаемая сила затяжки резьбового крепежного соединения

d, мм М8 М10 М12 М16 М20 М24 М30
, кН 1,40 2,40 3,60 7,50 14,0 23,0 45,0
S = D, мм 12 14 17 22 27 32 41

Расчет и практика эксплуатации резьбовых соединений показали, что болты с резьбой менее М10 при затяжке стандартными ключами (L ≈ 15d) могут быть разрушены. Например, болт с резьбой М6 из стали СтЗ разрушается при силе на ключе Fр ≈ 45H.

Поэтому в резьбовых соединениях для машин технологического назначения, как правило, не применяют болты с резьбой менее М8 (безопасная затяжка болтов малых диаметров осуществляется специальными ключами, ограничивающими размер силы Fр).

После сборки болтовое соединение должно быть застопорено от отвинчивания.

1.3. Стопорные устройства для резьбовых крепежных соединений

Резьбовые соединения в процессе работы не должны ослаблять соединение закрепленных деталей, т.е. они не должны самопроизвольно отвинчиваться под действием вибраций, возникающих при движении, толчках и ударах деталей машин во время работы. Поэтому ответственные резьбовые соединения после затяжки стопорят.

Стопорение ответственных резьбовых соединений производят разными способами. Их выбор зависит от доступа к местам крепления, от условий работы соединения, от конструкции соединения и др. Различают следующие способы предохранения резьбовых элементов от самоотвинчивания:

  • контргайкой (рис. 2, а) , которая препятствует самоотвинчиванию силой трения в резьбе и на торцовых поверхностях двух гаек. Этот способ позволяет легко регулировать силу затяжки резьбового соединения, фиксируя положение нижней гайки путем поворота верхней гайки после касания на соответствующий угол затяжки;
  • пружинными шайбами (рис. 2, б), которые обеспечивают напряженное состояние резьбового соединения. Пружинная шайба имеет высокую твердость, концы разреза разведены и заострены. Это позволяют произвести затяжку соединения и расплющить шайбу. При этом заостренные концы разреза пружинной шайбы прижаты к торцу гайки или головки болта и к поверхности закрепляемой детали (рис. 2, ж).

Шайбы специального назначения применяют как стопорные детали, предотвращающие самоотвинчивание гаек, болтов. Примеры таких шайб приведены на рис. 2, е.


Рис. 2.

При отвертывании под действием пружинных сил заостренные концы разреза пружинной шайбы внедряются в металл гайки или головки болта и в металл закрепляемой детали и тем самым удерживают болт или гайку от отвинчивания; разводными шплинтами (рис. 2, в) – один из распространенных и наиболее надежных способов. Разводные шплинты изготовляют с кольцевой головкой из стальной проволоки полукруглого сечения. Концы шплинта вставляют в отверстие, соединяющее болт с гайкой, и разводят; мягкой проволокой (рис. 2, г), которую применяют для нескольких и целых групп болтов. При этом головки болтов должны быть соединены проволокой так, чтобы ослабление затяжки одного из них вызывало натяжение проволоки и этим способствовало затяжке остальных; жестким соединением резьбовых деталей, которое осуществляют применением деформируемых стопорных шайб с носком (рис. 2, д) и с лапкой (рис. 2, е). Деформируемая шайба такой формы имеет выступы. Один из них, вставляется в отверстие детали или обжимается по краю детали, а другие отгибают и прижимают к грани завернутого болта или гайки, чем фиксируют их от отвинчивания; путем сварки головки винта, болта, гайки или шпильки (рис. 2, ж); посредством кернения резьбовых деталей с торца и бокового (рис. 2, з), расклепывания стержня резьбовой детали, закрашиванием лаком выхода резьбы из гайки и др.

Для стандартной крепежной резьбы угол подъема резьбы Ψ≤4°, а приведенный угол трения φ’ в зависимости от материала гайки и винта – φ’=6 ÷ 16°, следовательно, все крепежные резьбы – самотормозящие и при статической нагрузке не самоотвинчиваются.

Мелкие крепежные резьбы (по сравнению с крупными) имеют меньший угол подъема резьбы и поэтому они менее склонны к самоотвинчиванию при динамических нагрузках.

1.4. Разборка болтового соединения

Разборку болтового соединения начинают с освобождения гаек от стопорных устройств. После этого приступают к отвинчиванию гаек. Если гайка не отвинчивается, то не следует удлинять рукоятку ключа или прикладывать большие усилия, так как этим можно сорвать резьбу или скрутить болт. В этом случае смачивают резьбу керосином и через некоторое время (когда керосин проникнет в резьбу) вновь пытаются отвинчивать гайку. Если гайка после этого тоже не отвинчивается, то пробуют завинтить ее дальше и когда она сдвинется с места, вновь начинают отвинчивать.

Когда все гайки отвинчены, удаляют болты.

Затем начинают последовательно завинчивать отжимные болты до тех пор, пока зазор между деталями не будет достаточным для того, чтобы снять деталь или сборочную единицу.

1.5. Подготовка к сборке других резьбовых соединений

Подготовка к сборке других резьбовых соединений заключается в проверке соответствия размеров сбегов, недорезов, проточек и фасок на соединяемых резьбовых деталях по нормам, приведенным в табл. 3, 4, 5.

Таблица 3. Сбеги, недорезы, проточки и фаски для трубной цилиндрической резьбы (по ГОСТ 10549-80)


Размеры Число Наружная резьба Внутренняя резьба
сбег х недорез, проточка фаска сбег недорез, проточка фаска
f R R 1 d f f R R 1 d f
1/8 28 1,6 2,5 2,5 1,0 0,5 8 1,0 2,2 4 4 1,0 0,5 10,0 1,0
1/4 18 2,4 4,0 4 1,0 0,5 11 1,6 3,3 5 5 1,6 13,5
1/2 14 4,5 5,0 5 1,6 18 2,0 4,8 8 8 2,0 1,0 21,5 1,6
1 11 4,1 6,0 6 1,0 29,5 2,5 6,0 10,0 10 3,0 34,0
2 1 / 2 71,5 76
3 84 89
4 109 114
5 134,5 139
6 160 165

Таблица 4. для конической дюймовой резьбы с углом профиля 60° по ГОСТ 6111-52


Размеры Число

витков на 1”

Наружная резьба Внутренняя резьба
сбег недорез проточка сбег недорез проточка фаска с=с 1
b r r 1 d 4 b r r 1 d 4
1/16 27 2,5 3,5 2 0,5 0,3 6 3,0 6 3 1,0 0,5 8,5 1,0
1/4 18 3,5 5,5 3 1,0 0,5 11 4,0 9 4 14,0 1,6
1/2 14 4,5 6,0 4 18 5,5 11 6 1,6 1,0 22,0
1 5,5 7,0 5 1,6 29 6,5 14 7 34,0 2,0

Таблица 5. Сбеги, проточки и фаски для трапецеидальной однозаходной резьбы по ГОСТ 10549-80


Шаг резьбы Проточка Фаска
f R R 1 наружная

резьба d f

внутренняя

резьба d f

2 3 1,0 0,5 d-3,0 d+1,0 1,6
3 5 1,6 d-4,2 2,0
4 6 1,0 d-5,2 d+1,1 2,5
5 8 2,0 d-7,0 d+1,6 3,0
6 10 3,0 d-8,0 3,5
8 12 d-10,2 d+1,8 4,5
10 16 d-12,5 5,5
12 18 d-14,5 d+2,1 6,5
16 25 5,0 2,0 d-19,5 d+2,8 9,0
20 d-24,0 d+3,0 11,0
24 30 d-28,0 d+3,5 13,0

1.6. Постановка контрольных штифтов

Для возможности установки на прежнее место снятую тщательно выверенную и приработанную деталь или сборочную единицу применяют конические или цилиндрические штифты.

Штифтовые соединения применяют для фиксации взаимного положения деталей (рис. 3). В качестве распространенного примера можно привести фиксацию двумя коническими штифтами взаимного положения корпуса и крышки редуктора (рис. 3, б), чем обеспечивается сохранение их взаимного положения при совместной механической обработке, сборке и разборке редуктора.

Рис. 3. а – с цилиндрическим штифтом; б, в, – с коническим штифтом

Диаметр штифта должен быть на 20 ÷ 30% меньше диаметра болта или винта, которым крепится деталь или сборочная единица.

Отверстия под контрольные штифты сверлят после того, как соединяемые детали выверены относительно друг друга и закреплены окончательно.

Штифтов в соединении должно быть не менее двух, и они должны быть расположены друг от друга на максимально возможном расстоянии. Например, при соединении деталей прямоугольной формы контрольные штифты ставят по диагонали между крепежными деталями. При сверлении отверстий под штифты оставляют припуск на развертывание посадочного отверстия под устанавливаемый штифт.

Цилиндрические штифты обычно ставят на рабочее место с гарантированным натягом K7/m6 или по переходной посадке Н7/m6, а в движущихся соединениях – с расклепыванием концов.

Окончательно забитый штифт должен выступать над поверхностью на размер не менее двух фасок. Если нет возможности выбить штифт или отверстие несквозное, то применяют вытяжные штифты (рис. 3, в).

2. Сборка и разборка соединений на шпильках

Соединения на шпильках осуществляют неподвижной посадкой шпилек в тело детали одним из четырех способов:

  • по сбегу резьбы;
  • с помощью плотной резьбы;
  • с помощью бурта и с упором в дно отверстия.

Правильно завернутая шпилька в отверстие должна сидеть плотно и при отвинчивании гайки даже с тугой резьбой не должна вывинчиваться из детали. Шпилька должна быть строго перпендикулярна той плоскости, в которую она ввернута. Глубину отверстия делают больше длины резьбовой части шпильки. В глухих отверстиях резьбу нарезают с большой осторожностью.

Шпильки завертывают и вывертывают разными способами.

Первый способ. На свободный резьбовой конец шпильки навинчивают две гайки и верхней гайкой контрят нижнюю. Вращая ключом за верхнюю гайку, ввертывают шпильку в резьбовое отверстие плотно на сбег резьбы.

Второй способ. На конец шпильки свободно навинчивают специальное приспособление (рис. 4, а), представляющее собой высокую шестигранную гайку с внутренней резьбой для шпильки. Гайка стопорится на конце шпильки винтом, который упирается в торец шпильки. Затем обычным гаечным ключом вращают гайку за наружный шестигранник и завинчивают шпильку в деталь. Когда шпилька завинчена, стопорный винт ослабляют, придерживая гайку ключом; после этого гайка легко свинчивается со шпильки.

Для повышения производительности используют электро- и пневмоинструмент с применением специальной головки для шпильковерта (рис. 4, б). Сменную гайку 1 навинчивают на шпильку до упора-шарика 2, перемещение которого ограничивается пятой 3. При завертывании шпильковертом шпильки до конца в резьбовое отверстие в головке шарик 2 будет проскальзывать по пяте 3. После этого шпильковерт переключают на обратный ход, и головка свинчивается со шпильки.

Рис. 4.

Используя сменные гайки 1 можно завинчивать шпильки различного диаметра. Наличие на хвостовике шести граней 4 под ключ позволяет использовать головку при завинчивании гаек вручную.

При установке шпилек необходимо выполнять следующие основные правила:

  1. шпилька должна иметь плотную посадку в корпусе;
  2. ось шпильки должна быть перпендикулярна к поверхности детали.

Контроль установки резьбовых шпилек осуществляется одним из двух способов:

  • по шаблону для нескольких шпилек (рис. 5, а);
  • по угольнику или шаблону на каждую шпильку (рис. 5, б).

Рис. 5.

Категорически запрещается подгибать шпильки, если они не попадают в отверстия детали, так как они при этом деформируются у корня (по резьбе) и могут лопнуть во время работы. Перекос шпилек можно исправлять только нарезанием новой резьбы в отверстии.

Важным условием нормальной работы резьбового соединения являются отсутствие изгибающих напряжений в стержне болта или шпильки. В связи с этим неплотное прилегание гайки к торцу детали недопустимо. Гайки должны навертываться на шпильки от руки до соприкосновения с деталью. При большом числе гаек рекомендуется завертывать их в определенном порядке Общий принцип затяжки – сначала затягивают гайки, находящиеся в середине детали, затем попеременно по паре с каждой стороны. Гайки целесообразно затягивать постепенно, т. е. сначала затянуть все гайки на одну треть затяжки, затем на две трети и, наконец, на полную затяжку. Гайки, расположенные по кругу, следует затягивать крест-накрест и также постепенно.

Следует особо тщательно выбирать крепежные детали для крепления фланцев и крышек, прижимающих прецизионные подшипники шпиндельных узлов. Перекосы резьбы или торцов винтов и зенковок под головки винтов приводят к деформации фланцев и крышек и, как следствие, к перекосу самого подшипника. Большое значение в этих случаях приобретает также равномерность затяжки.

К резьбовым соединениям предъявляют следующие требования:

  • все гайки, входящие в резьбовые соединения, должны быть до отказа и равномерно затянуты;
  • в резьбовых соединениях, работающих при толчках, ударах, вибрации, гайки должны быть застопорены (затянуты контргайкой), а у подкладных шайб – отогнуты выступы, вставлены штифты и т. д.;
  • болт или шпилька должны выступать над гайкой не менее чем на два витка резьбы;
  • на выступающих концах болтов и шпилек резьба должна быть чистой и полной;
  • под гайками и головками болтов не должно быть зазоров, и они должны плотно соприкасаться с соединяемыми деталями;
  • при сборке болтовых соединений не допускается наращивание рукояток ключей. Применять можно ключи только с рукоятками стандартной длины.

План:

Введение

2 Сборка агрегатов

Заключение

Введение

Сборку агрегатов автомобилей осуществляют из предварительно собранных, отрегулированных и испытанных узлов с выполнением в полном объеме необходимых регулировочных и контрольных операций, приработки обкатки и испытаний.

Сборка является завершающей и наиболее ответственной стадией ремонта автомобилей, в которой сходятся результаты всех предшествующих этапов производственного процесса.

Качество сборочных работ влияет на работоспособность отремонтированного автомобиля, на его надежность и долговечность. Объем сборочных работ весьма значителен и составляет 20..-40 % общей трудоемкости ремонта автомобиля.

Сборка выполняется различными методами и средствами в зависимости от масштаба производства. При единичном производстве она выполняется по принципу концентрирования операций. С увеличением масштаба авторемонтного производства происходит переход от концентрации операций к их дифференцированию.

Для упрощения процесса организации сборку подразделяют на узловую и общую. Под узловой понимают последовательную сборку подгрупп и групп, а под общей-сборку готовых изделий.

В результате общей сборки получается готовое изделие, соответствующее всем предъявляемым к нему техническим требованиям. При завершении сборки фиксируется окончательная точность выходных параметров автомобиля.

Технологический процесс сборки складывается из ряда операций, заключающихся в соединении деталей в узлы, а узлов в агрегаты и автомобиль, отвечающий требованиям чертежей и технических условий.

При сборке узлов автомобиля применяются резьбовые, прессовые, шлицевые, шпоночные и другие виды соединений. Наиболее широкое применение получили резьбовые и прессовые соединения, а из передач - зубчатые.

1 Сборка типовых соединений и передач

Сборка резьбовых соединений. Резьбовые соединения составляют примерно 25... 30 % от общего количества соединений деталей машин. При сборке резьбовых соединений должны быть обеспечены:

соосность осей болтов, шпилек, винтов и резьбовых отверстий и необходимая плотность посадки в резьбе;

отсутствие перекосов торца гайки или головки болта относительно поверхности сопрягаемой детали, так как перекос является основной причиной обрыва винтов и шпилек;

соблюдение очередности и постоянство усилий затяжки группы гаек (головка цилиндров и др.).

Выбор типа инструмента определяется конструктивными особенностями соединяемых деталей и величиной крутящего момента, требуемого для сборки резьбового соединения.

В целях надежной работы резьбового соединения при сборке необходимо обеспечить: установленные техническими требованиями на сборку величину затяжки, последовательность и равномерность затяжки гаек или болтов; перпендикулярность торца гайки и опорной части зажимаемой детали к оси резьбы; выполнение затяжки в несколько приемов сначала с усилием, равным половине требуемого, а потом с полным усилием; предохранение от самоотвертывания (стопорение) требуемым способом; способ контроля усилия затяжки резьбового соединения устанавливается техническими требованиями на сборку.

Повышение производительности труда при сборке резьбовых соединений достигается применением специального ручного инструмента (коловратных, трещеточных и специальных ключей) и использованием механизированного инструмента (электрических, гидравлических пневматических гайковертов и отверток).

Сборка прессовых соединений. Качество сборки прессовых соединений формируется под воздействием следующих факторов: материала сопрягаемых деталей, геометрических размеров, формы и шероховатости поверхностей, соосности деталей и прилагаемого усилия запрессовывания, наличия смазки и др.

При сборке прессовых соединений с натягом необходимо знать величину усилия запрессовки, так как в зависимости от его величины подбирается необходимое оборудование.

Сборка зубчатых передач. Зубчатые колеса насаживают на посадочные шейки валов с небольшим зазором или натягом вручную или при помощи специальных приспособлений. Процесс сборки зубчатых передач заключается в установке и закреплении их на валу, проверке и регулировке этих передач.

Для правильного зацепления зубчатых цилиндрических колес необходимо, чтобы оси валов лежали в одной плоскости и были параллельны. Их выверка производится регулированием положения гнезд под подшипники в корпусе. После установки зубчатые колеса проверяют по зазору, зацеплению и контакту.

Качество сборки передач с коническими зубчатыми колесами определяется правильностью пересечения осей валов передачи, точностью углов между осями колес и величинами бокового и радиального зазора.

Сборка шлицевых соединений.

В шлицевых соединениях центрирование детали может производиться по наружному диаметру выступов вала или по внутреннему диаметру впадин вала и боковым сторонам шлицев. При центрировании детали по наружному диаметру выступов вала последний шлифуют по наружному диаметру шлицев, а отверстие протягивают. После сборки шлицевого соединения нужно проверить детали (в частности, шестерни) на биение. Проверку выполняют на поверочной плите, устанавливая вал в центры или на призмы. Проверка на биение производится при помощи индикатора.

При подвижной посадке шестерни на шлицевом валу шестерня должна свободно перемещаться по валу без заедания и в то же время не качаться.

Сборка конусных соединений. При сборке конусных соединений особое внимание нужно обращать на прилегание конусных поверхностей. Для этого конусные поверхности ответственных деталей развертывают или притирают при помощи притирочных паст. Проверку притирки производят по цвету притираемых поверхностей (поверхность должна быть ровной и матовой) или по краске. Чтобы конусное соединение работало правильно, оно должно иметь натяг.

Сборка шпоночных соединений. При сборке комплектов автомобильных деталей широко применяются два вида шпоночных соединений- с призматической (обыкновенной) и сегментной шпонкой.

При сборке шпоночных соединений обоих видов особое внимание должно быть уделено подгонке шпонок по торцам и зазору по наружной стороне шпонки. Так как через торцы шпонок обычно передаются крутящие моменты от одной детали к другой, они должны быть очень точно пригнаны по шпоночному пазу сопряженной детали.

Сборка деталей машин с подшипниками качения.

При запрессовке подшипника качения размер его колец изменяется:

внутреннее кольцо увеличивается, а наружное уменьшается. Эти изменения вызывают уменьшение диаметрального зазора между рабочими поверхностями колец и шариков.

Внутреннее кольцо подшипника, сопряженное с цапфой вала, должно иметь посадку с натягом, а наружное-с небольшим зазором так, чтобы кольцо имело возможность во время работы незначительно провертываться.

При установке в узле двух или нескольких подшипников необходимо обеспечить самоцентрирование неподвижных колец в радиальном и осевом направлениях. Это позволит компенсировать возможные неточности обработки, сборки и температурных деформаций базовых деталей. Несоблюдение этого правила может привести к перекосам подшипников и заклиниванию шариков.

При запрессовке подшипников качения с помощью оправок необходимо, чтобы усилие запрессовки передавалось непосредственно на торец соответствующего кольца: внутреннего-при напрессовке на вал, наружного - при запрессовке в корпус и на оба торца колец, если подшипники одновременно напрессовываются на вал и входят в корпус.

Срок службы подшипников качения зависит в значительной мере от степени предохранения их от грязи и пыли.

Лекция. Тема : Разборка, сборка и обкатка машин и сборочных единиц.

План:

1.Общие правила приема-сдачи машин в ремонт.

2.Технологические процессы разборки и сборки машин. Требования и рекомендации по их выполнению.

3.Особенности сборки типовых сопряжений и узлов.

4.Балансировка деталей и сборочных единиц.

5.Обкатка машин и механизмов.

6.Оборудование, приспособления, инструмент.

1.Общие правила приема-сдачи машин в ремонт.

Процесс приема-сдачи машины в ремонт содержит следующие Основные этапы:

Подготовка машины к ремонту,

Доставка машины в ремонтное предприятие,

Оформление приемо-сдаточной документации.

Подготовка машины к ремонту Может выполняется как по месту ее эксплуатации, так и в ремонтном предприятии (мастерской).

Начало подготовки:

Очистка системы охлаждения

(5%-ная HCL / H2O - 1: 10, Na2CO3/ H2O – 1…1,5: 10);

- промывка картеров двигателя и трансмиссии

*слить неостывшую смазку (по окончании смены),

*залить дизельное топливо,

*трансмиссия - 5 – 10 минут работы на холостом ходу,

*двигатель – 3 – 5 минут прокручивания вала от пусковых устройств;

- Контрольный осмотр и диагностирование

цель – контроль комплектности, наличия дефектов, определение величины остаточного ресурса агрегатов, потребности в ремонте (вид ремонта);

диагностирование осуществляется как на основании Инструментальных измерений Технических показателей и показаний встроенных контрольно-измерительных приборов (величина компрессии, давления масла, зазоров, дымность, наличия стуков и нехарактерных шумов и т. п.), так и на основании Информации, полученной от лица, работавшего на машине (мощность двигателя, расход топлива и смазки, наличие неисправностей и т. д.);

Запуск двигателя для диагностирования должен производиться до слива масла;

Оформление технической документации

* Заводской паспорт – запись результатов осмотра и диагностирования, объем выполненной машиной работы до ремонта (кол-во усл. эт. га, израсходованного топлива, отработанных мото-часов, км. пробега и т. п.);

*ведомость учета дефектов – наименование, марка, хозяйственный (заводской) номер, наработка машины, перечень подлежащих замене или ремонту сборочных единиц и деталей, перечень запасных частей и материалов, необходимых для ремонта;

*приемо-сдаточный акт – 2 экземпляра, подписи представителей сторон, наработка машины от начала эксплуатации и от последнего ремонта, техническое состояние узлов и сборочных единиц, аварийные узлы и детали, комплектность машины.

Требования к комплектности машин, поступающих в ремонт, могут быть определены сторонами на договорной основе.

Общие правила предусматривают сдачу в ремонт тракторов полнокомплектными, автомобилей по 1-й комплектности – полнокомплектными, по 2-й комплектности – без кузова (платформы, фургона) и деталей крепления их к раме.

Резина и аккумуляторные батареи (если не производится их ремонт или замена) не обезличиваются и возвращаются заказчику с отремонтированной машиной.

2.Технологические процессы разборки и сборки машин. Требования и рекомендации по их выполнению.

Разборку выполнять после мойки или очистки.

Последовательность разборки:

· на отдельные сборочные единицы и узлы - на детали;

· в тех пределах, которые необходимы для ремонта;

· в последовательности, указанной в технологической схеме или карте (см. рис.1);

· общая последовательность разборки – по мере необходимости для

Обеспечения доступа к узлам и деталям: капоты, кабина, ограждения, топливные и другие баки, двигатель, механизмы управления и силовой передачи, ходовая часть.

Технология разборки Определяется техническими требованиями и

указаниями. изложенными в технологических картах и другой технической документации.

Технологическое обеспечение – Перечень инструмента, приспособлений, стендов, подставок, грузоподъемных механизмов и другого оборудования, указанный в технологических картах.

· разборку сборочных единиц (двигатель, топливный, масляный,

водяной насосы, стартер, генератор и т. п.) выполнять на участках или рабочих местах, предназначенных для их ремонта;

· разборку топливного насоса, форсунок, масляного фильтра, масля-

Ного насоса системы смазки или гидросистемы, гидрораспределителя, турбокомпрессора, генератора, стартера, реле-регулятора и т. п. выполнять после предварительного испытания на стендах;

· для разборки резьбовых соединений применять инструмент,

обеспечивающий сохранность крепежных деталей: накидные, торцовые и т. п. ключи, ключи для выворачивания шпилек, механизированный инструмент и т. д.;

· избегать вывертывания шпилек, если они не мешают выполнению

последующих ремонтных операций;

· перед разборкой резьбовых соединений, при необходимости,

Очистить и смазать свободную часть резьбы;

· не допускать разукомплектовывания крепежных деталей;

· для обеспечения сохранности деталей при разборке соединений с

Гарантированным натягом (втулок, подшипников качения, шестерен и т. д.) применять гидравлические (винтовые) съемники и прессы, а так же вспомогательные приспособления – наставки, оправки и т. п.;

· не допускается разукомплектовывание деталей, работающих в паре:

Шатун-крышка, крышка коренного подшипника - гнездо коренного подшипника, гильза - поршень (если не подлежат замене), шестерни главной передачи, плунжерные пары, золотник – корпус гидрораспределителя и т. п.;

· перед демонтажем отмечать положение деталей в узлах вращения

(муфта сцепления, карданная передача и др.) для сохранения балансировки при сборке;

· при текущем ремонте сохранять работающие в паре детали (если они соответствуют техническим требованиям) и при помощи меток обеспечивать сохранность их первоначального взаимного расположения (шлицевые валы и шестерни, грузы регулятора и др.)

· перед разборкой сопряжений, подлежащих регулировке при эксплу-

Атации (конические подшипники, конические пары шестерен, червяк и ролик рулевого механизма и др.) для контроля пригодности деталей убедиться в возможности выполнения ее в дальнейшем (наличие запаса регулировки);

· при разборке подшипниковых узлов, усилие прилагать к тому кольцу, которое установлено с натягом (на валу или в отверстии);

· демонтированные детали укладывать на стеллажи, подставки, кон-

Тейнеры и др. тару;

· для предупреждения дефектов (вмятин, царапин и т. п.) запрещается

Укладывать детали в тару навалом.

Рис.1. Технологическая схема разборки двигателя.

3.Особенности сборки типовых сопряжений и узлов.

Технологическим процессом, предшествующим сборке, является комплектование.

Комплектование – Это подбор деталей по номенклатуре (перечню), количеству, размерам и массе. Для определения номенклатуры и количества деталей могут быть использованы: комплектовочные карты или спецификации, а так же каталог деталей и сборочных единиц машины. (См. раздаточный материал) .

При комплектовании наиболее "ответственных" соединений, с целью повышения ресурса их работы применяется Селективный метод . Для этого поля допусков сопрягаемых деталей разбивают на несколько размерных групп и внутри них проводят комплектование (рис.2).

Таким способом комплектуются гильзы с поршнями, поршневые пальцы с отверстиями в бобышках поршней, золотниковые пары распределителей гидросистем, плунжерные пары топливных насосов высокого давления и др.

Рис. 2.Схема расположения размерных групп при селективной сборке сопряжений: А – с зазором; Б – с натягом.

Сборка – соединение деталей в пары, которые образуют сопряжения. Из сопряжений и крепежных деталей собирают узлы и сборочные единицы.

Сборочные единицы установленные на раму или соединенные между собой образуют машину.

Так при сборке коробки перемены передач валы и подшипники, валы (оси) и шестерни, подшипники и корпус образуют сопряжения. Валы и оси в сборе с подшипниками и шестернями образуют узлы: первичный, вторичный, промежуточный вал. Первичный, вторичный, промежуточный вал, блок шестерен заднего хода, механизм переключения передач, установленные в корпус образуют сборочную единицу – коробку перемены передач.

Качество сборки определяется следующими основными факторами:

· тщательность очистки (мойки) деталей, используемых при сборке;

· соответствие геометрических параметров, шероховатости

поверхности, массы, неуравновешенности (несбалансированности) деталей и узлов параметрам, заданным технической документацией;

· качество комплектования сопряжений и узлов;

Прокладочных и др. материалов, уплотняющих и стопорных элементов и т. п.;

· соблюдение регламентированных технологических режимов и

Требований к сборке: усилия и последовательность затяжки резьбовых соединений, температура деталей при сборке, направление усилий, прилагаемых к деталям при запрессовывании и др.

Типовыми сопряжениями являются:

Резьбовые соединения,

Подвижные соединения (сопряжения с зазором),

Неподвижные соединения (сопряжения с натягом или прессовые),

Зубчатые передачи,

Цепные и ременные передачи,

Шпоночные и шлицевые соединения,

Конусные соединения,

Сопряжения валов (осей) с самоподжимными сальниками,

Шарнирные соединения,

Соединения при помощи заклепок.

Сборка резьбовых соединений - 25 – 30 % от общей трудоемкости сборочных работ.

Условия качества:

Соосность осей болтов, шпилек, винтов и резьбовых отверстий,

Требуемая плотность посадки в резьбе,

Отсутствие перекоса торца гайки или головки болта относительно поверхности сопрягаемой детали,

Соблюдение последовательности и величины усилий затягивания группы креплений (головка цилиндров, фланец трубного соединения, крышки корпусов редукторов и др.

Использование регламентированных способов стопорения соединений.

Рис. 3. Способы стопорения резьбовых соединений:

1 – контргайкой; 2 – пружинной шайбой; 3 – шплинтом; 4 – замковой шайбой; 5 – шплинтовочной проволокой.

Если резьбовое соединение стопорится Контргайкой , гайку затягивают в два-три приема до отказа, затем ослабляют ее на 1/3 оборота и повторно затягивают до отказа. Затем, придерживая ключом гайку, затягивают контргайку до отказа.

При стопорении соединения Пружинной шайбой гайку затягивают в два-три приема. После затяжки гайки пружинная шайба должна прилегать к детали и гайке по всей окружности. Зазор в разрезе шайбы должен быть 1...2 мм.

При стопорении гайки деформированной (замковой) шайбой один выступ шайбы отгибают на грань гайки, а второй - за кромку корпуса.

При стопорении гайки шплинтом , гайку затягивают до отказа, вставляют в отверстие вала (стержня) шплинт, концы шплинта разводят по оси вала: один - на вал (стержень болта), а другой - на плоскость гайки. Шплинт не должен выступать над плоскостью корончатой гайки.

Если группа болтов стопорится Проволокой , то болты затягиваются до отказа в два-три приема, шплинтовочную проволоку в отверстия головок болтов вводят крест-накрест таким образом, чтобы после стягивания концов проволоки создавался момент, действующий в направлении закручивания болтов. Концы проволоки после шплинтования туго скручивают вместе и обрезают на расстоянии 5...7 мм от начала скрутки.

Шпильки в чугунные детали закручивают на глубину не менее 1,1, а в стальные - на 0,8 диаметра резьбы. Нарезанный конец шпильки (болта) должен выступать из гайки (контргайки) на две-три нитки резьбы.

В многоболтовых соединениях , чтобы избежать деформации деталей, гайки (болты) затягивают постепенно в два-три приема в последовательности, указанной на рис. 4.

Рис. 4. Последовательность затяжки многоболтовых резьбовых соединений:

а – прямоугольных; б – круглых.

Максимально допустимый момент затяжки Н м, можно определить по формуле:

Ммах = 10-3 d3σв,

Где d – наружный диаметр резьбы, мм,

σв – предел прочности материала болта (шпильки), МПа.

Сборка сопряжений с зазором или натягом.

При сборке Подвижных (сопряжения с зазором) и Неподвижных соединений (сопряжения с натягом или прессовые) точности сборки (величины зазоров и натягов) достигают предварительным измерением сопрягаемых деталей и, при необходимости, подгонкой их друг к другу различными слесарными способами или на металлорежущих станках. Например, направляющую втулку стержня клапана развертывают под стержень клапана и т. п.

В некоторых механизмах, узлах величину зазора или натяга обеспечивают Регулировочными компенсаторами (винтами, гайками, прокладками, кольцами и т. п.). Так, зазор (размер замыкающего звена размерной цепи «кулачок-толкатель-штанга- коромысло-торец стержня клапана») между торцом стержня клапана и бойком коромысла устанавливают регулировочным винтам, а натяг в сопряжении «рычаг-конус шарового пальца рулевого управления» - гайкой.

В подавляющем большинстве сопряжений нормальные посадки обеспечиваются без подгонки и регулировки, за счет групповой (селективной), частичной или полной взаимозаменяемости. Например, по методу селективной сборки собирают сопряжения «поршневой палец-отверстия бобышек поршня» (детали рассортированы на размерные группы).

Частичная взаимозаменяемость мажет быть в сопрягаемых деталях, изготовленных по стандартным ремонтным размерам (шейки коленчатого вала - вкладыши; гильза - поршень и т. п.).

Полная взаимозаменяемость обеспечивает нормальные посадки деталей в сопряжении (зацеплении, соединении) не зависимо от партии деталей. По методу полной взаимозаменяемости собирают сопряжения «вал-подшипник качения»; посадочное место корпусной детали-подшипник качения; зубчатые, цепные и ременные передачи; резьбовые, шлицевые и шпоночные соединения, самоподжимные сальниковые уплотнения и т. п.

Перед сборкой тщательно осматривают сопрягаемые поверхности, при наличии заусенец, забоин, коррозии их удаляют, острые кромки притупляют. Затем очищенные поверхности смазывают машинным (моторным) маслом (в неподвижных сопряжениях эту операцию выполняют, если обе сопрягаемые детали стальные). Шероховатость поверхностей в неподвижных сопряжениях должна быть не болеее Ra= 2,5...1,25 мкм, в противном случае произойдет смятие неровностей и уменьшится натяг.

Усилие запрессовки Р3 :

Где N - Величина натяга (принимается по техническим требованиям на сборку данной машины или сборочной единицы), мм; b - ширина (длина) посадочного места (принимают по чертежу), мм.

При сборке сопряжений с большими натягами охватывающую деталь нагревают, а охватываемую - охлаждают.

Температуру нагрева или охлаждения в °С :

Т = (1,2…1,3) N / α d,

Где α - коэффициент линейного расширения металла нагреваемой (охлаждаемой) детали; d - Номинальный диаметр сопрягаемых деталей, мм.

Температура нагрева детали Не должна превышать 500 °С , в противном случае деталь потеряет первоначальную прочность.

Нагревают деталь (перед запрессовкой) в масле, в расплавленном свинце или открытым способом, а охлаждают сжиженными газами, воздухом, азотом или сухим льдом (твердой двуокисью углерода).

Чтобы избежать перекосов при запрессовке, применяют различные оправки и наставки, равномерно распределяющие усилия по сопрягаемым поверхностям.

Сборка узлов с подшипниками качения.

Подшипники промыть в 8... 10%-ном растворе машинного масла в бензине.

Посадочные места вала и корпуса протереть чистой ветошью и смазать машинным маслом.

Использовать пресс или винтовые приспособления, подкладные кольца, монтажные трубки, оправки (см. рис. 5).

Рис. 5. Схема монтажа подшипников качения с применением:

А - подкладочного кольца; Б – монтажной трубки; В – втулки; Г – специальной оправки; Д – гайки конусной разрезной: 1 – втулка; 2 – корпус; 3 - подшипник; 4 – гайка; 5 – вал;

Е – монтажного валика: 1 – корпус; 2 – деталь; 3 – валик; 4 – ось; 5 – иголки (ролики); 6 – шайба.

При напрессовке подшипника на вал:

Усилие прикладывать к внутреннему кольцу (рис. 5, б).

При запрессовке подшипника в корпус :

Корпус нагреть струей воздуха или погружением (малогабаритные корпуса) в горячее масло.

Усилие прикладывать к наружному кольцу (рис. 5, Г ).

При одновременной напрессовке на вал и в гнездо :

Усилие прикладывать на торцы обоих колец,

Вал и корпус должны быть неподвижны (рис. 5, В ).

При сборке игольчатых подшипников с закрытым торцом :

Использовать оправку (рис. 5, Е ),

Отверстие охватывающей детали 2 смазать тонким слоем консистентной смазки,

В отверстие ввести монтажный валик 3 и в образовавшийся зазор устанавливают комплект иголок (роликов).

Вместо монтажного валика ввести рабочую ось.

Если торец игольчатого подшипника открыт, то иглы вводят в зазор между осью и корпусом без монтажного валика.

При установке неразъемных подшипников скольжения (втулки распределительного вала):

Запрессовывать в гнезда, совместив маслопроводимые отверстия втулки и корпуса;

Расточить или развернуть втулки под диаметр шеек сопряженных валов. Если втулки соосны - растачивать (развертывать) с одной установки.

При сборке разъемных подшипников скольжения (вкладышей):

Добиться равномерного прилегания вкладышей к поверхностям гнезд корпусов и шеек валов;

При необходимости, при сборке узлов с толстостенными вкладышами, выполнить пригоночные работы к поверхностям гнезд и к шейкам валов (по пятнам касания);

Пригонку тонкостенных вкладышей к гнездам и валу не производить.

Для обеспечения равномерного зазора между шейкой вала и вкладышем необходимо:

* тщательно проверить геометрическую форму и соосность гнезд, а также параллельность плоскостей разъема;

* убедиться в наличии гарантированного зазора между шейкой и вкладышами.

Масляный зазор для толстостенных вкладышей равен (0,001...0,005)D, тонкостенных (0,001...0,0015) D, Где D - Диаметр шейки вала, мм.

орка шпоночных соединений.

Призматические и сегментные шпонки устанавливают в паз вала с натягом по ширине (легкими ударами медного молотка).

Между торцом шпоночной канавки ступицы (втулки) и верхней плоскостью шпонки должен быть зазор 5 (рис. 6, А, б ).

Клиновидные шпонки должны входить в пазы сопрягаемых деталей с натягом по высоте. Между боковыми гранями и головкой шпонки должен быть зазор 5 (рис. 6, В). Зазор «головка шпонки - торец ступицы» равен 1,0... 1,5 высоты шпонки у головки.

А – А

орка шлицевых соединений

а) неподвижные:

Натяг 0,03...0,04 мм,

Охватывающую деталь (шестерню) нагреть до температуры 90...120°С, а затем напрессовать на вал до упора.

Б) подвижные:

Шестерня должна свободно перемещаться от усилия руки по всей длине шлицов вала, предварительно смазанных моторным маслом.

Сборка зубчатых передач.

Качество сборки оценивать по боковому зазору и прилеганию рабочих поверхностей зубьев,

Боковые зазоры между зубьями замерять индикатором или щупом, а для зубчатых зацеплений с большим модулем - с помощью свинцовой пластины, прокатив ее между зубьями и измерив ее толщину,

Прилегание рабочих поверхностей зубьев оценивать по расположению и форме пятна контакта,

В шестернях, находящихся в постоянном зацеплении, торцы венцов зубьев должны совпадать.

Боковой зазор в зацеплении можно замерить индикатором (рис. 7).

Методика измерения:

Застопорить нижнюю шестерню 1,

Стержень индикатора 4 установить перпендикулярно хомуту 3,

Проворачивая незакрепленное зубчатое колесо 2, фиксировать показания индикатора.

Рис. 7. Проверка бокового зазора в зацеплении цилиндрических зубчатых колес:

1 - нижняя шестерня; 2 - зубчатое колесо, 3 - Хомут; 4 - Индикатор, I- II- положения зубчатого колеса.

Боковой зазор определяют по формуле:

∆ = Dh / 2L

Где D - диаметр делительной окружности зубчатого колес, мм;

L - длина плеча, мм; h - показания индикатора, мм,

Прилегание (взаимный контакт) рабочих поверхностей зубчатых колес.

Проверка «на краску».

Возможная форма и расположение отпечатка показаны на рисунке 8.

Рис. 8. Проверка правильности контакта зубчатых колес «на краску»:

А - цилиндрических; Б - конических зубьев ведущей шестерни;

в - конических зубьёв ведомой шестерни»

I - при нормальном межцентровом расстоянии; II - при уменьшенном;

III- при увеличенном, IV -при перекосе осей; V- при нормальном зацеплении; VI, VII, VIII - при неправильном зацеплении.

Сборка цепных и ременных передач.

Необходимые условия:

Параллельность и расположение в одной плоскости валов и звездочек (шкивов),

Стрела прогиба:

* для горизонтальных цепных передач - 2 % от межцентрового расстояния,

* для вертикальных - 0,6 % от межцентрового расстояния,

* для клиноременных передач –1,5 – 2,0 % от межцентрового расстояния при усилии 10 кг.

Установка самоподжимных сальников и др. уплотнений.

При запрессовке Самоподжимного сальника усилие прикладывать только к армированному корпусу (рис. 9).

Сальник вместе устанавливать на шейку вала при помощи конусной оправки.

Шейку вала предварительно смазать моторным маслом.

Обеспечить перпендикулярность плоскости расположения сальника к оси вала.

Установка фетрового (войлочного) уплотнения:

· пропитать в солидолографитной смеси (80% солидола и 20 %

Чешуйчатого графита) в течение 30 мин. при 50...70°С.

· пропитанное уплотнение установить в канавку корпуса и обжать

Оправкой по месту.

При установке Асбестового кольца (шнура):

* отпустить нажимную втулку;

* в зазор между корпусом и валом намотать шнур,

*зажать втулкой.

Зазор между торцами втулки и корпуса в рабочем положении должен быть не менее 3 мм .

При установке уплотняющих картонных прокладок:

* покрыть клеем «Герметик», если они соприкасаются с маслом (допускается ставить без клея),

* покрыть пастой типа УН-25, суриком или белилами, если они соприкасаются с водой.

* пробковые прокладки перед установкой выдержать в увлажненной ткани в течение 4...5 ч.

Сборка конусных соединений

· подобрать охватывающую деталь по конусу вала, проверяя качество

сопряжения «на краску», на качение и по глубине посадки на валу,

· между торцами охватывающей и охватываемой деталей должен

Сборка заклепочных соединений:

· сверление отверстия под заклепку;

· фиксация склепываемых деталей с помощыо штифтов;

· сжатие склепываемых деталей.

· высаживание свободного конца заклепок (равен 1,5 диаметра

Заклепки) оправками с приложением ударной или статической нагрузки.

Клепка может выполняться в холодном состоянии или после предварительного нагрева заклепок до температуры 900... 950 °С.

Второй способ клепки бесшумен и обеспечивает получение соединения лучшего качества.

Механизация клепки заключается в применении клепальных скоб, пневматических клепальных молотов и специальных клепальных машин (прессов, полуавтоматов и автоматов).

Необходимая сила холодной клепки (кН) на прессах составляет не менее 250 F, А горячей - 100 F, Где F - Площадь поперечного сечения заклепки, см2.

Пресс выбирают из расчета превышения расчетной силы клепки на 20...40%.



Загрузка...