novomarusino.ru

Оксиды углерода (II) и (IV). Карбонилы переходных металлов

Соединений углерода . Оксид углерода (II) - угарный газ - соединение без запаха и цвета, горит голубоватым пламенем, легче воздуха и плохо растворим в воде.

СО - несолеобразующий оксид, но при пропускании в расплав щелочи при высоком давлении образует соль муравьиной кислоты:

СО + KOH = HCOOK,

Поэтому СО часто считают ангидридом муравьиной кислоты:

HCOOH = CO + H 2 O,

Реакция протекает при действии концентрированной серной кислоты .

Строение окида углерода (II) .

Степень окисления +2. Связь выглядит следующим образом:

Стрелкой показана дополнительная связь, которая образуется по донорно-акцепторному механизму за счет неподеленной пары электронов атома кислорода . Из-за этого связь в оксиде очень прочная, поэтому оксид способен вступать в реакции окисления-восстановления только при высоких температурах.

Получение окида углерода (II) .

1. Получают его в ходе реакции окисления простых веществ:

2 C + O 2 = 2 CO,

C + CO 2 = 2 CO,

2. При восстановлении СО самим углеродом или металлами. Реакция идет при нагревании:

Химические свойства окида углерода (II).

1. В нормальных условиях оксид углерода не взаимодействует с кислотами и с основаниями.

2. В кислороде воздуха оксид углерода горит голубовытым пламенем:

2СО + О 2 = 2СО 2,

3. При температуре оксид углерода восстанавливает металлы из оксидов:

FeO + CO = Fe + CO 2,

4. При взаимодействии оксида углерода с хлором образуется ядовитый газ - фосген . Реакция идет при облучении:

CO + Cl 2 = COCl 2,

5. Взаимодействует оксид углерода с водой:

C О + H 2 O = CO 2 + H 2,

Реакция обратима.

6. При нагревании оксид углерода образуется метиловый спирт:

CO + 2H 2 = CH 3 OH,

7. С металлами оксид углерода образует карбонилы (летучие соединения).

Углерод (С) – типичный неметалл; в периодической системе находится в 2-м периоде IV группе, главной подгруппе. Порядковый номер 6, Ar = 12,011 а.е.м., заряд ядра +6.

Физические свойства: углерод образует множество аллотропных модификаций: алмаз – одно из самых твердых веществ, графит, уголь, сажа .

Атом углерода имеет 6 электронов: 1s 2 2s 2 2p 2 . Последние два электрона располагаются на отдельных р-орбиталях и являются неспаренными. В принципе, эта пара могла бы занимать одну орбиталь, но в таком случае сильно возрастает межэлектронное отталкивание. По этой причине один из них занимает 2р х, а другой, либо 2р у , либо 2р z -орбитали.

Различие энергии s- и р-подуровней внешнего слоя невелико, поэтому атом довольно легко переходит в возбужденное состояние, при котором один из двух электронов с 2s-орбитали переходит на свободную 2р. Возникает валентное состояние, имеющее конфигурацию 1s 2 2s 1 2p x 1 2p y 1 2p z 1 . Именно такое состояние атома углерода характерно для решетки алмаза — тетраэдрическое пространственное расположение гибридных орбиталей, одинаковая длина и энергия связей.

Это явление, как известно, называют sp 3 -гибридизацией, а возникающие функции – sp 3 -гибридными. Образование четырех sp 3 -cвязeй обеспечивает атому углерода более устойчивое состояние, чем три р-р- и одна s-s-связи. Помимо sp 3 -гибридизации у атома углерода наблюдается также sp 2 — и sp-гибридизация. В первом случае возникает взаимное наложение s- и двух р-орбиталей. Образуются три равнозначные sp 2 — гибридных орбитали, расположенные в одной плоскости под углом 120° друг к другу. Третья орбиталь р неизменна и направлена перпендикулярно плоскости sp 2 .


При sp-гибридизации происходит наложение орбиталей s и р. Между двумя образующимися равноценными гибридными орбиталями возникает угол 180°, при этом две р-орбитали у каждого из атомов остаются неизменными.

Аллотрорпия углерода. Алмаз и графит

В кристалле графита атомы углерода расположены в параллельных плоскостях, занимая в них вершины правильных шестиугольников. Каждый из атомов углерода связан с тремя соседними sp 2 -гибридными связями. Между параллельными плоскостями связь осуществляется за счет ван-дер-ваальсовых сил. Свободные р-орбитали каждого из атомов направлены перпендикулярно плоскостям ковалентных связей. Их перекрыванием объясняется дополнительная π-связь между атомами углерода. Таким образом, от валентного состояния, в котором находятся атомы углерода в веществе, зависят свойства этого вещества .

Химические свойства углерода

Наиболее характерные степени окисления: +4, +2.

При низких температурах углерод инертен, но при нагревании его активность возрастает.

Углерод как восстановитель:

— с кислородом
C 0 + O 2 – t° = CO 2 углекислый газ
при недостатке кислорода — неполное сгорание:
2C 0 + O 2 – t° = 2C +2 O угарный газ

— со фтором
С + 2F 2 = CF 4

— с водяным паром
C 0 + H 2 O – 1200° = С +2 O + H 2 водяной газ

— с оксидами металлов. Таким образом выплавляют металл из руды.
C 0 + 2CuO – t° = 2Cu + C +4 O 2

— с кислотами – окислителями:
C 0 + 2H 2 SO 4 (конц.) = С +4 O 2 ­ + 2SO 2 ­ + 2H 2 O
С 0 + 4HNO 3 (конц.) = С +4 O 2 ­ + 4NO 2 ­ + 2H 2 O

— с серой образует сероуглерод:
С + 2S 2 = СS 2 .

Углерод как окислитель:

— с некоторыми металлами образует карбиды

4Al + 3C 0 = Al 4 C 3

Ca + 2C 0 = CaC 2 -4

— с водородом — метан (а также огромное количество органических соединений)

C 0 + 2H 2 = CH 4

— с кремнием, образует карборунд (при 2000 °C в электропечи):

Нахождение углерода в природе

Ссвободный углерод встречается в виде алмаза и графита. В виде соединений углерод находится в составе минералов: мела, мрамора, известняка – СаСО 3 , доломита – MgCO 3 *CaCO 3 ; гидрокарбонатов – Mg(НCO 3) 2 и Са(НCO 3) 2 , СО 2 входит в состав воздуха; углерод является главной составной частью природных органических соединений – газа, нефти, каменного угля, торфа, входит в состав органических веществ, белков, жиров, углеводов, аминокислот, входящих в состав живых организмов.

Неорганические соединения углерода

Ни ионы С 4+ , ни С 4- ‑ ни при каких обычных химических процессах не образуются: в соединениях углерода имеются ковалентные связи различной полярности.

Оксид углерода (II) СО

Угарный газ; бесцветный, без запаха, малорастворим в воде, растворим в органических растворителях, ядовит, t°кип = -192°C; t пл. = -205°C.

Получение
1) В промышленности (в газогенераторах):
C + O 2 = CO 2

2) В лаборатории — термическим разложением муравьиной или щавелевой кислоты в присутствии H 2 SO 4 (конц.):
HCOOH = H 2 O + CO­

H 2 C 2 O 4 = CO­ + CO 2 ­ + H 2 O

Химические свойства

При обычных условиях CO инертен; при нагревании – восстановитель; несолеобразующий оксид.

1) с кислородом

2C +2 O + O 2 = 2C +4 O 2

2) с оксидами металлов

C +2 O + CuO = Сu + C +4 O 2

3) с хлором (на свету)

CO + Cl 2 – hn = COCl 2 (фосген)

4) реагирует с расплавами щелочей (под давлением)

CO + NaOH = HCOONa (формиат натрия)

5) с переходными металлами образует карбонилы

Ni + 4CO – t° = Ni(CO) 4

Fe + 5CO – t° = Fe(CO) 5

Оксид углерода (IV) СO 2

Углекислый газ, бесцветный, без запаха, растворимость в воде — в 1V H 2 O растворяется 0,9V CO 2 (при нормальных условиях); тяжелее воздуха; t°пл.= -78,5°C (твёрдый CO 2 называется «сухой лёд»); не поддерживает горение.

Получение

  1. Термическим разложением солей угольной кислоты (карбонатов). Обжиг известняка:

CaCO 3 – t° = CaO + CO 2

  1. Действием сильных кислот на карбонаты и гидрокарбонаты:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 ­

NaHCO 3 + HCl = NaCl + H 2 O + CO 2 ­

Химические свойства СO 2
Кислотный оксид: реагирует с основными оксидами и основаниями, образуя соли угольной кислоты

Na 2 O + CO 2 = Na 2 CO 3

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

NaOH + CO 2 = NaHCO 3

При повышенной температуре может проявлять окислительные свойства

С +4 O 2 + 2Mg – t° = 2Mg +2 O + C 0

Качественная реакция

Помутнение известковой воды:

Ca(OH) 2 + CO 2 = CaCO 3 ¯(белый осадок) + H 2 O

Оно исчезает при длительном пропускании CO 2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат:

CaCO 3 + H 2 O + CO 2 = Сa(HCO 3) 2

Угольная кислота и её соли

H 2 CO 3 — Кислота слабая, существует только в водном растворе:

CO 2 + H 2 O ↔ H 2 CO 3

Двухосновная:
H 2 CO 3 ↔ H + + HCO 3 — Кислые соли — бикарбонаты, гидрокарбонаты
HCO 3 — ↔ H + + CO 3 2- Cредние соли — карбонаты

Характерны все свойства кислот.

Карбонаты и гидрокарбонаты могут превращаться друг в друга:

2NaHCO 3 – t° = Na 2 CO 3 + H 2 O + CO 2 ­

Na 2 CO 3 + H 2 O + CO 2 = 2NaHCO 3

Карбонаты металлов (кроме щелочных металлов) при нагревании декарбоксилируются с образованием оксида:

CuCO 3 – t° = CuO + CO 2 ­

Качественная реакция — «вскипание» при действии сильной кислоты:

Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2 ­

CO 3 2- + 2H + = H 2 O + CO 2 ­

Карбиды

Карбид кальция:

CaO + 3 C = CaC 2 + CO

CaC 2 + 2 H 2 O = Ca(OH) 2 + C 2 H 2 .

Ацетилен выделяется при реакции с водой карбидов цинка, кадмия, лантана и церия:

2 LaC 2 + 6 H 2 O = 2La(OH) 3 + 2 C 2 H 2 + H 2 .

Be 2 C и Al 4 C 3 разлагаются водой с образованием метана:

Al 4 C 3 + 12 H 2 O = 4 Al(OH) 3 = 3 CH 4 .

В технике применяют карбиды титана TiC, вольфрама W 2 C (твердые сплавы), кремния SiC (карборунд – в качестве абразива и материала для нагревателей).

Цианиды

получают при нагревании соды в атмосфере аммиака и угарного газа:

Na 2 CO 3 + 2 NH 3 + 3 CO = 2 NaCN + 2 H 2 O + H 2 + 2 CO 2

Синильная кислота HCN – важный продукт химической промышленности, широко применяется в органическом синтезе. Ее мировое производство достигает 200 тыс. т в год. Электронное строение цианид-аниона аналогично оксиду углерода (II), такие частицы называют изоэлектронными:

C= O: [:C= N:] –

Цианиды (0,1-0,2%-ный водный раствор) применяют при добыче золота:

2 Au + 4 KCN + H 2 O + 0,5 O 2 = 2 K + 2 KOH.

При кипячении растворов цианидов с серой или сплавлении твердых веществ образуются роданиды :
KCN + S = KSCN.

При нагревании цианидов малоактивных металлов получается дициан: Hg(CN) 2 = Hg + (CN) 2 . Растворы цианидов окисляются до цианатов :

2 KCN + O 2 = 2 KOCN.

Циановая кислота существует в двух формах:

H-N=C=O; H-O-C= N:

В 1828 г. Фридрих Вёлер (1800-1882) получил из цианата аммония мочевину: NH 4 OCN = CO(NH 2) 2 при упаривании водного раствора.

Это событие обычно рассматривается как победа синтетической химии над «виталистической теорией».

Существует изомер циановой кислоты – гремучая кислота

H-O-N=C.
Ее соли (гремучая ртуть Hg(ONC) 2) используются в ударных воспламенителях.

Синтез мочевины (карбамида):

CO 2 + 2 NH 3 = CO(NH 2) 2 + H 2 O. При 130 0 С и 100 атм.

Мочевина является амидом угольной кислоты, существует и ее «азотный аналог» – гуанидин.

Карбонаты

Важнейшие неорганические соединения углерода – соли угольной кислоты (карбонаты). H 2 CO 3 – слабая кислота (К 1 =1,3·10 -4 ; К 2 =5·10 -11). Карбонатный буфер поддерживает углекислотное равновесие в атмосфере. Мировой океан обладает огромной буферной емкостью, потому что он является открытой системой. Основная буферная реакция – равновесие при диссоциации угольной кислоты:

H 2 CO 3 ↔ H + + HCO 3 — .

При понижении кислотности происходит дополнительное поглощение углекислого газа из атмосферы с образованием кислоты:
CO 2 + H 2 O ↔ H 2 CO 3 .

При повышении кислотности происходит растворение карбонатных пород (раковины, меловые и известняковые отложения в океане); этим компенсируется убыль гидрокарбонатных ионов:

H + + CO 3 2- ↔ HCO 3 —

CaCO 3 (тв.) ↔ Ca 2+ + CO 3 2-

Твердые карбонаты переходят в растворимые гидрокарбонаты. Именно этот процесс химического растворения избыточного углекислого газа противодействует «парниковому эффекту» – глобальному потеплению из-за поглощения углекислым газом теплового излучения Земли. Примерно треть мирового производства соды (карбонат натрия Na 2 CO 3) используется в производстве стекла.

Углерод образует два чрезвычайно устойчивых оксида (СО и СO 2), три значительно менее устойчивых оксида (С 3 O 2 , С 5 O 2 и С 12 O 9), ряд неустойчивых или плохо изученных оксидов (С 2 O, С 2 O 3 и др.) и нестехиометрический оксид графита. Среди перечисленных оксидов особую роль играют СО и СO 2 .

ОПРЕДЕЛЕНИЕ

Монооксид углерода при обычных условиях горючий газ без цвета и запаха.

Он довольно токсичен из-за его способности образовывать комплекс с гемоглобином, который примерно в 300 раз устойчивее, чем комплекс кислород-гемоглобин.

ОПРЕДЕЛЕНИЕ

Диоксид углерода при обычных условиях - бесцветный газ, примерно в 1,5 раза тяжелее воздуха, благодаря чему его можно переливать, как жидкость, из одного сосуда в другой.

Масса 1 л CO 2 при нормальных условиях составляет 1,98 г. Растворимость диоксида углерода в воде невелика: 1 объем воды при 20 o С растворяет 0,88 объема CO 2 , а при 0 o С - 1,7 объема.

Прямое окисление углерода при недостатке кислорода или воздуха приводит к образованию СО, при достаточном их количестве образуется СO 2 . Некоторые свойства этих оксидов представлены в табл. 1.

Таблица 1. Физические свойства оксидов углерода.

Получение оксида углерода

Чистый СО может быть получен в лаборатории дегидратированием муравьиной кислоты (НСООН)концентрированной серной кислотой при ~140 °С:

HCOOH = CO + H 2 O.

В небольших количествах диоксид углерода можно легко получить действием кислот на карбонаты:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 .

В промышленном масштабе CO 2 получают главным образом как побочный продукт в процессе синтеза аммиака:

CH 4 + 2H 2 O = CO 2 + 4H 2 ;

CO + H 2 O = CO 2 + H 2 .

Большие количества углекислого газа получают при обжиге известняка:

CaCO 3 = CaO + CO 2 .

Химические свойства оксида углерода

Монооксид углерода химически активен при высоких температурах. Он проявляет себя как сильный восстановитель. Реагирует с кислородом, хлором, серой, аммиаком, щелочами, металлами.

CO + NaOH = Na(HCOO) (t = 120 - 130 o C, p);

CO + H 2 = CH 4 + H 2 O (t = 150 — 200 o C, kat. Ni);

CO + 2H 2 = CH 3 OH (t = 250 — 300 o C, kat. CuO/Cr 2 O 3);

2CO + O 2 = 2CO 2 (kat. MnO 2 /CuO);

CO + Cl 2 = CCl 2 O(t = 125 — 150 o C, kat. C);

4CO + Ni = (t = 50 — 100 o C);

5CO + Fe = (t = 100 — 200 o C, p).

Диоксид углерода проявляет кислотные свойства: реагирует со щелочами, гидратом аммиака. Восстанавливается активными металлами, водородом, углеродом.

CO 2 + NaOH dilute = NaHCO 3 ;

CO 2 + 2NaOH conc = Na 2 CO 3 + H 2 O;

CO 2 + Ba(OH) 2 = BaCO 3 + H 2 O;

CO 2 + BaCO 3 + H 2 O = Ba(HCO 3) 2 ;

CO 2 + NH 3 ×H 2 O = NH 4 HCO 3 ;

CO 2 + 4H 2 = CH 4 + 2H 2 O (t = 200 o C, kat. Cu 2 O);

CO 2 + C = 2CO (t > 1000 o C);

CO 2 + 2Mg = C + 2MgO;

2CO 2 + 5Ca = CaC 2 + 4CaO (t = 500 o C);

2CO 2 + 2Na 2 O 2 = 2Na 2 CO 3 + O 2 .

Применение оксида углерода

Монооксид углерода широко используется как топливо в виде генераторного газа или водяного газа и образуется также привыделении многих металлов из их оксидов восстановлением углем. Генераторный газ получают, пропуская воздух черезраскаленный уголь. В его состав входит около 25% СО, 4% СO2 и 70% N 2 со следами Н 2 и СН 4 62.

Применение диоксида углерода чаще всего обусловлено его физическими свойствами. Его используют как охлаждающий агент, для газирования напитков, при получении облегченных(вспененных) пластмасс, а также как газ для создания инертной атмосферы.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Определите во сколько раз тяжелее воздуха оксид углерода (IV)CO 2 .
Решение Отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Данная величина показывает, во сколько раз первый газ тяжелее или легче второго газа.

Относительную молекулярную массу воздуха принимают равной 29 (с учетом содержания в воздухе азота, кислорода и других газов). Следует отметить, что понятие «относительная молекулярная масса воздуха» употребляется условно, так как воздух - это смесь газов.

D air (CO 2) = M r (CO 2) / M r (air);

D air (CO 2) = 44 / 29 = 1,517.

M r (CO 2) = A r (C) + 2×A r (O) = 12 + 2× 16 = 12 + 32= 44.

Ответ Оксид углерода (IV)CO 2 тяжелее воздуха в 1,517 раз.

(IV ) (СО 2 , диоксид углерода, углекислый газ) представляет собой бесцветный газ без вкуса и запаха, который тяжелее воздуха и растворим в воде .

В обычных условиях твердый диоксид углерода переходит сразу в газообразное состояние, минуя состояние жидкости.

При большом количестве оксид углерода люди начинают задыхаться. Концентрация более 3% приводит к учащенному дыханию, а свыше 10 % наблюдается потеря сознания и смерть.

Химические свойства оксида углерода.

Оксид углерода - это ангидрид угольной кислоты Н 2 СО 3 .

Если пропускать оксид углерода через гидроксид кальция (известковая вода), то наблюдается выпадение осадка белого цвета:

Ca (OH ) 2 + CO 2 = CaCO 3 ↓ + H 2 O,

Если углекислый газ взят в избытке, то наблюдается образование гидрокарбонатов, которые растворяются в воде:

CaCO 3 + H 2 O + CO 2 = Ca(HCO 3) 2 ,

Которые потом распадаются при нагревании:

2KNCO 3 = K 2 CO 3 + H 2 O + CO 2

Применение оксида углерода.

Используют диоксид углерода в различных областях промышленности. В химическом производстве - как хладагент.

В пищевой промышленности используют его как консервант Е290. Хоть ему и присвоили «условно безопасный», на самом деле это не так. Медики доказали, что частое употребление в пищу Е290 приводит к накоплению токсичного ядовитого соединения. Поэтому надо внимательнее читать этикетки на продуктах.

0,00125 (при 0 °C) г/см³ Термические свойства Температура плавления −205 °C Температура кипения −191,5 °C Энтальпия образования (ст. усл.) −110,52 кДж/моль Химические свойства Растворимость в воде 0.0026 г/100 мл Классификация Рег. номер CAS 630-08-0 Рег. номер PubChem 281 Рег. номер EINECS 211-128-3 SMILES # Регистрационный номер EC 006-001-00-2 RTECS FG3500000

Оксид углерода (II) (угарный газ , окись углерода , монооксид углерода ) - бесцветный ядовитый газ (при нормальных условиях) без вкуса и запаха. Химическая формула - CO. Нижний и верхний концентрационные пределы распространения пламени: от 12,5 до 74 % (по объёму) .

Строение молекулы

Молекула CO имеет тройную связь, как и молекула азота N 2 . Так как эти молекулы сходны по строению (изоэлектронны, двухатомны, имеют близкую молярную массу), то и свойства их также схожи - очень низкие температуры плавления и кипения, близкие значения стандартных энтропий и т. п.

Благодаря наличию тройной связи молекула CO весьма прочна (энергия диссоциации 1069 кДж/моль, или 256 ккал/моль, что больше, чем у любых других двухатомных молекул) и имеет малое межъядерное расстояние (d C≡O =0,1128 нм или 1,13Å).

Молекула слабо поляризована, электрический момент её диполя μ = 0,04·10 −29 Кл·м. Многочисленные исследования показали, что отрицательный заряд в молекуле CO сосредоточен на атоме углерода C − ←O + (направление дипольного момента в молекуле противоположно предполагавшемуся ранее). Ионизационный потенциал 14,0 в, силовая константа связи k = 18,6.

Свойства

Оксид углерода (II) представляет собой бесцветный газ без вкуса и запаха. Горюч. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей.

Основными типами химических реакций, в которых участвует оксид углерода (II), являются реакции присоединения и окислительно-восстановительные реакции , в которых он проявляет восстановительные свойства.

При комнатных температурах CO малоактивен, его химическая активность значительно повышается при нагревании и в растворах (так, в растворах он восстанавливает соли , , и других до металлов уже при комнатной температуре. При нагревании восстанавливает и другие металлы, например CO + CuO → Cu + CO 2 . Это широко используется в пирометаллургии . На реакции CO в растворе с хлоридом палладия основан способ качественного обнаружения CO, см. ниже).

Окисление СО в растворе часто идёт с заметной скоростью лишь в присутствии катализатора. При подборе последнего основную роль играет природа окислителя. Так, KMnO 4 быстрее всего окисляет СО в присутствии мелкораздробленного серебра , K 2 Cr 2 O 7 - в присутствии солей , KClO 3 - в присутствии OsO 4 . В общем, по своим восстановительным свойствам СО похож на молекулярный водород.

Ниже 830 °C более сильным восстановителем является CO, - выше - водород. Поэтому равновесие реакции:

до 830 °C смещено вправо, выше 830 °C влево.

Интересно, что существуют бактерии, способные за счёт окисления СО получать необходимую им для жизни энергию.

Оксид углерода (II) горит пламенем синего цвета (температура начала реакции 700 °C) на воздухе:

ΔG° 298 = −257 кДж, ΔS° 298 = −86 Дж/K

Температура горения CO может достигать 2100 °C, она является цепной, причём инициаторами служат небольшие количества водородсодержащих соединений (вода, аммиак , сероводород и др.)

Благодаря такой хорошей теплотворной способности, CO является компонентом разных технических газовых смесей (см., например генераторный газ), используемых, в том числе, для отопления.

галогенами . Наибольшее практическое применение получила реакция с хлором :

Реакция экзотермическая, её тепловой эффект 113 кДж, в присутствии катализатора (активированный уголь) она идёт уже при комнатной температуре. В результате реакции образуется фосген - вещество, получившее широкое распространение в разных отраслях химии (а также как боевое отравляющее вещество). По аналогичным реакцииям могут быть получены COF 2 (карбонилфторид) и COBr 2 (карбонилбромид). Карбонилиодид не получен. Экзотермичность реакций быстро снижается от F к I (для реакций с F 2 тепловой эффект 481 кДж, с Br 2 - 4 кДж). Можно также получать и смешанные производные, например COFCl (подробнее см. галогенпроизводные угольной кислоты).

Реакцией CO с F 2 , кроме карбонилфторида можно получить перекисное соединение (FCO) 2 O 2 . Его характеристики: температура плавления −42 °C, кипения +16 °C, обладает характерным запахом (похожим на запах озона), при нагревании выше 200 °C разлагается со взрывом (продукты реакции CO 2 , O 2 и COF 2), в кислой среде реагирует с иодидом калия по уравнению:

Оксид углерода (II) реагирует с халькогенами . С серой образует сероксид углерода COS, реакция идёт при нагревании, по уравнению:

ΔG° 298 = −229 кДж, ΔS° 298 = −134 Дж/K

Получены также аналогичные селеноксид углерода COSe и теллуроксид углерода COTe.

Восстанавливает SO 2:

C переходными металлами образует очень летучие, горючие и ядовитые соединения - Карбонилы , такие как Cr(CO) 6 , Ni(CO) 4 , Mn 2 CO 10 , Co 2 (CO) 9 и др.

Оксид углерода (II) незначительно растворяется в воде, однако не реагирует с ней. Также он не вступает в реакции с растворами щелочей и кислот . Однако реагирует с расплавами щелочей с образованием соответствующих формиатов:

Интересна реакция оксида углерода (II) с металлическим калием в аммиачном растворе. При этом образуется взрывчатое соединение диоксодикарбонат калия:

Токсическое действие оксида углерода (II) обусловлено образованием карбоксигемоглобина - значительно более прочного карбонильного комплекса с гемоглобином , в сравнении с комплексом гемоглобина с кислородом (оксигемоглобином) , блокируя, таким образом, процессы транспортировки кислорода и клеточного дыхания . Концентрация в воздухе более 0,1 % приводит к смерти в течение одного часа .

История открытия

Оксид углерода (II) был впервые получен французским химиком Жаком де Лассоном в при нагревании оксида цинка с углём, но первоначально его ошибочно приняли за водород, так как он сгорал синим пламенем.

То, что в состав этого газа входит углерод и кислород, выяснил в английский химик Вильям Крукшэнк. оксид углерода (II) вне атмосферы Земли впервые был обнаружен бельгийским ученым М. Мижотом (M. Migeotte) в 1949 году по наличию основной колебательно-вращательной полосы в ИК спектре Солнца.

Получение

Промышленный способ

  • Образуется при горении углерода или соединений на его основе (например, бензина) в условиях недостатка кислорода :
(тепловой эффект этой реакции 220 кДж),
  • или при восстановлении диоксида углерода раскалённым углём:
(ΔH=172 кДж, ΔS=176 Дж/К)

Эта реакция происходит при печной топке, когда слишком рано закрывают печную заслонку (пока окончательно не прогорели угли). Образующийся при этом оксид углерода (II), вследствие своей ядовитости, вызывает физиологические расстройства («угар») и даже смерть (см. ниже), отсюда и одно из тривиальных названий - «угарный газ» .

Реакция восстановления диоксида углерода обратимая, влияние температуры на состояние равновесия этой реакции приведено на графике. Протекание реакции вправо обеспечивает энтропийный фактор, а влево - энтальпийный. При температуре ниже 400 °C равновесие практически полностью сдвинуто влево, а при температуре выше 1000 °C вправо (в сторону образования CO). При низких температурах скорость этой реакции очень мала, поэтому оксид углерода (II) при нормальных условиях вполне устойчив. Это равновесие носит специальное название равновесие Будуара .

  • Смеси оксида углерода (II) с другими веществами получают при пропускании воздуха, водяного пара и т. п. сквозь слой раскалённого кокса, каменного или бурого угля и т. п. (см. генераторный газ , водяной газ , смешанный газ , синтез-газ).

Лабораторный способ

  • Разложение жидкой муравьиной кислоты под действием горячей концентрированной серной кислоты , либо пропуская муравьиную кислоту над оксидом фосфора P 2 O 5 . Схема реакции:
Можно также обработать муравьиную кислоту хлорсульфоновой . Эта реакция идёт уже при обычной температуре по схеме:
  • Нагревание смеси щавелевой и концентрированной серной кислот. Реакция идёт по уравнению:
Выделяющийся совместно с CO диоксид углерода можно удалить, пропустив смесь через баритовую воду .
  • Нагревание смеси гексацианоферрата (II) калия с концентрированной серной кислотой. Реакция идёт по уравнению:

Определение оксида углерода (II)

Качественно можно определить наличие CO по потемнению растворов хлорида палладия (или пропитанной этим раствором бумаги). Потеменение связано с выделением мелкодисперсного металлического палладия по схеме:

Эта реакция очень чувствительная. Стандартный раствор: 1 грамма хлорида палладия на литр воды.

Количественное определение оксида углерода (II) основано на иодометрической реакции:

Применение

  • Оксид углерода (II) является промежуточным реагентом, используемым в реакциях с водородом в важнейших промышленных процессах для получения органических спиртов и неразветвлённых углеводородов.
  • Оксид углерода (II) применяется для обработки мяса животных и рыбы, придает им ярко красный цвет и вид свежести, не изменяя вкуса (en:Clear smoke или en:Tasteless smoke технология). Допустимая концентрация CO равна 200 мг/кг мяса.
  • Угарный газ от выхлопа двигателей применялся нацистами в годы Второй мировой войны для массового умерщвления людей путём отравления.

Оксид углерода (II) в атмосфере Земли

Различают природные и антропогенные источники поступления в



Загрузка...