novomarusino.ru

Примеры принятие решений математическими методами. Математические методы принятия управленческих решений в условиях неопределенности

Из различных методов принятия экономических решений можно выделить наиболее распространенные: математическое программирование; теория игр; теория статистических решений; теория массового обслуживания; метод причинно-следственного анализа; использование модели

Математическое программирование представляет собой теоретические принципы и аналитические методы решения задач, в которых происходит поиск экстремума (минимум или максимум) определенной функции при наличии ограничений, налагаемых на неизвестные. Особое место в математическом программировании занимает линейное программирование, которое наиболее разработанное и широко применяется на практике. Линейное программирование включает аналитические методы решения таких задач, в которых целевая функция и ограничения выражены в линейной форме, то есть неизвестные входящих в целевой функции и ограничения должны первая ступень. Задачи, в которых отыскиваются максимальное и минимальное значение линейной функции при линейных ограничениях, называются задачами линейного программирования.

В зависимости от вида целевой функции и системы ограничений методы математического программирования делят на

линейное программирование - целевая функция и функции ограничений, входящих в систему ограничений являются линейными (уравнение первого порядка)

нелинейное программирование - целевая функция или одна из функций ограничений, входящих в систему ограничений являются нелинейными (уравнение высших порядков)

Целочисленное (дискретное) программирования - если хотя бы одну переменную наложен условие целочисленности;

динамическое программирование - если параметры целевой функции и / или система ограничений меняются во времени или целевая функция имеет аддитивный / мулиишгикативний вид или сам процесс принятия решения масс многошаговый характер.

В зависимости от сведения информация о процессе заранее, в методы математического программирования делят на

Стохастическое программирование - известна не вся информация о процессе заранее: параметры входящих в целевую функцию или в функцию ограничений являются случайными или приходится принимать решения в условиях риска

Детерминировано программирования - известна вся информация о процессе заранее.

В зависимости от количества целевых функций задачи делятся на:

Однокритериальной;

Багатокритериапьни.

Линейное программирование объединяет теорию и методы решения класса задач, в которых определяется совокупность значений переменных величин, которые удовлетворяют заданным линейным ограничением и максимизируя (или минимизирующая) некоторую линейную функцию. То есть, задачами линейного программирования являются такие оптимизационные задачи, в которых целевая функция и функциональные ограничения - линейные функции, принимают любые значения из некоторого множества значений.

Для задач линейного программирования разработаны многочисленные методы решения и соответствующее математическое обеспечение для различных ситуаций. Для решения задач линейного программирования используется несколько методов, среди которых наиболее распространенными являются симплекс-метод и графический метод.

Наиболее удобный метод для решения подобных задач является симплекс метод, который позволяет отталкиваясь от исходного варианта решения задач, за определенное количество шагов получить оптимальный вариант. Каждый из этих шагов (итераций) заключается в нахождении нового варианта, которому соответствует наибольшее (при решении задач на максимум) или меньше (при решении задач на минимум) значения линейной функции, чем значение этой же функции в предыдущем варианте. Процесс повторяется пока не будет получено оптимальный вариант решения, которое имеет экстремальное значение.

Таким образом, можно считать, что оптимальным является план, который обеспечивает максимальный производственной эффект при заданном объеме материальных, сырьевых, трудовых ресурсов. Максимальный производственный эффект определяется критерием оптимизации, который и определяет целевую функцию.

Наиболее типичными задачами, для решения которых используют симплекс-метод, являются: оптимальное планирование на предприятиях (планирование ассортиментного выпуска продукции), оптимальный набор исходного сырья, эффективное использование сырьевых, материальных, трудовых, финансовых и энергетических ресурсов, задачи оптимизации организации производства (транспортная задача).

Оптимизация производственной программы (ассортиментные задачи) на предприятиях представляют собой группу задач, в которых определяют производственную программу с учетом влияния на предприятия внутренних факторов (возможностей оборудования, лимитов сырья, трудовых факторов) и некоторых внешних требований (спрос по товарной продукции в целом или отдельных ии ассортиментных групп и видов, средней цены ассортимента, который выпускается и т.д.).

Основные этапы постановки и решения задачи оптимизации производственной программы:

1) построение экономико-математической модели: сбор информации, подготовка ее для построения модели; выбор критерия оптимизации; выбор ограничений и построение их в общем виде; аналитический и табличный вид модели с реальными коэффициентами;

2) нахождение оптимального решения задачи;

3) анализ результатов решения и практические рекомендации.

В оптимальном плане выпуска продукции выбор критериев оптимизации осуществляется в соответствии с целью решения задачи. Критерием оптимизации могут быть разные стоимостные и натуральные показатели. Кроме функции цели, в модели используются ограничения, так как ресурсы, которыми располагает предприятие, в большинстве случаев ограничены, а также ассортиментный выпуск должен рассчитываться с учетом спроса на продукцию. Ограничения избираются в зависимости от ресурсов, которые используются для выпуска производственной программы предприятия.

Эффективность задачи и оптимальность полученного ассортимента оценивается с помощью систем экономических показателей (изменение объемов производства продукции в натуральном и стоимостном выражении, снижение затрат на производство продукции, увеличение прибыли и рентабельности, уменьшение затрат на 1 руб., Использование сырья и т.д.).

Теория игр изучает количественные закономерности в конфликтных ситуациях. Основной целью теории игр является выработка или количественное обоснование рекомендаций по выбору наиболее рационального решения в конфликтных ситуациях. В экономических исследованиях конфликтными ситуациями называются такие ситуации, когда возникает необходимость выбора рационального решения из двух или более взаимоисключающих вариантов.

Теория статистических решений, которая использует методы изучения процессов и явлений, которые очень подвергаются воздействию случайных, неопределенных факторов, в основе данной теории составляет теория вероятности.

Теория массового обслуживания, изучает закономерности процессов массового обслуживания и на их основе разрабатывает эффективные методы управления системами обслуживания. Методы теории массового обслуживания позволяют рационально организовать процесс обслуживания и обеспечить наиболее эффективное функционирование системы массового обслуживания (сокращение времени ожидания обслуживания, снижение затрат на обслуживание). Основу теории массового обслуживания составляют теория вероятности и математическая статистика.

Дерево принятия решений (также могут называться деревьями классификаций или регрессионного деревьями) - используется в области статистики и анализа данных для прогнозных моделей. Структура дерева содержит следующие элементы: "листья" и "ветви". На ребрах («ветвях») дерева принятия решения записаны атрибуты, от которых зависит целевая функция, в "письме" записаны значения целевой функции, а в других узлах - атрибуты, по которым различаются случаи. Чтобы классифицировать новый случай, надо спуститься по дереву до листа и выдать соответствующее значение. Подобные деревья решений широко используются в интеллектуальном анализе данных. Цель состоит в том, чтобы создать модель, которая прогнозирует значение целевой переменной на основе нескольких переменных на входе.

Каждый лист представляет собой значение целевой переменной, измененной в ходе движения от корня по листу. Каждый внутренний узел соответствует одной из входных переменных. Дерево может быть также "изучено" разделением выходных наборов переменных на подмножества, основанные на тестировании значений атрибутов. Это процесс, который повторяется на каждом из полученных подмножеств. Рекурсия завершается тогда, когда подмножество в узле имеет те же значения целевой переменной, таким образом, оно не добавляет ценности для предсказаний. Процесс, идущий "сверху вниз", индукция деревьев решений (TDIDT), является примером поглощающего "жадного" алгоритма, и на сегодняшний день является наиболее распространенной стратегией деревьев решений для данных, но это не единственная возможная стратегия. В интеллектуальном анализе данных, деревья решений могут быть использованы в качестве математических и вычислительных методов, чтобы помочь описать, классифицировать и обобщить набор данных, которые могут быть записаны следующим образом:

Зависимая переменная Y является целевой переменной, которую необходимо проанализировать, классифицировать и обобщить. Вектор х состоит из входных переменных Х1, x2, х3 и т.д., которые используются для выполнения этой задачи.

В анализе решений "дерево решений" используются как визуальный и аналитический инструмент поддержки принятия решений, где рассчитываются ожидаемые значения (или ожидаемая полезность) конкурирующих альтернатив.

Дерево решений состоит из трех типов узлов.

1. Узлы решение - обычно представлены квадратами.

2. Вероятностные узлы - представляются в виде круга.

3. Замыкающие узлы - представляются в виде треугольника.

На рис. 4.1, представленном ниже, дерево решений следует читать слева направо. Дерево решений не может содержать в себе циклические элементы, то есть каждый новый лист впоследствии может только расщепляться, отсутствуют сходятся пути. Таким образом, при конструировании дерева вручную, мы можем столкнуться с проблемой его размерности, поэтому, как правило, дерево решения мы можем получить с помощью специализированных программ. Обычно дерево решений представляется в виде символической схемы, благодаря которой его проще воспринимать и анализировать.

Рис. 4.1. дерево решений

Деревья решений, используемые в Data Mining, бывают двух основных тылов:

Анализ дерева классификации, когда прогнозируемый результат является классом, к которому относятся данные;

Регрессивный анализ дерева, когда прогнозируемый результат можно рассматривать как действительное число (например, цена на дом, или продолжительность пребывания пациента в больнице).

Упомянутые выше сроки впервые были использованы Брейман и др. Перечисленные типы имеют некоторые сходства, а также некоторые различия, такие, как процедура, используемая для определения, где разбивать. Некоторые методы позволяют построить более одного дерева решений:

Дерево решений "мешок", наиболее раннее дерево решений, строит несколько деревьев решений, неоднократно интерполирующая данные с заменой, и деревья голосований для прогноза консенсуса Случайный классификатор "лесной" использует ряд деревьев решений, с целью улучшения ставки классификации;

"Повышенные" дерева могут быть использованы для регрессивного типа и классификации типа проблем.

"Вращение леса» - деревья, в которых каждое дерево решений анализируется первым применением метода главных компонент (РСА) на случайные подмножества входных функций.

Общая схема построения дерева принятия решений по тестовым примерам выглядит следующим образом (по алгоритму рис. 4.2):

Рис. 4.2. Алгоритм построения дерева решений

Основной вопрос: как выбирать очередной атрибут? Есть разные способы выбирать очередной атрибут:

Алгоритм IDЗ, где выбор атрибута происходит на основании прироста информации (англ. Gain), или на основании коэффициент Джини.

Алгоритм С4.5 (улучшенная версия ID3), где выбор атрибута происходит на основании нормализованного прироста информации (англ. Gain Ratio).

Алгоритм CART и его модификации - IndCART, DB-CART.

Автоматический детектор взаимодействия Хи-квадрат (сил). Выполняет многоуровневый разделение при расчете классификации деревьев.

MARS: расширяет дерева решений для улучшения обработки цифровых данных.

На практике в результате работы этих алгоритмов часто получаются слишком детализированы дерева, которые при их дальнейшем применении дают много ошибок. Это связано с явлением переобучения. Для сокращения деревьев используется отсечение ветвей (англ. Pruning).

Регулировка глубины дерева - это техника, которая позволяет уменьшать размер дерева решений, удаляя участки дерева, которые имеют небольшой вес.

Один из вопросов, который возникает в алгоритме дерева решений - это оптимальный размер конечного дерева. Так, небольшое дерево может не охватить ту или иную важную информацию о выборочном пространства. Тем не менее, трудно сказать, когда алгоритм должен остановиться, потому что невозможно спрогнозировать, добавление которого узла позволит значительно уменьшить ошибку. Эта проблема известна как "эффект горизонта". Тем не менее, общая стратегия ограничения дерева сохраняется, то есть удаление узлов реализуется в том случае, если они не дают дополнительной информации.

Необходимо отметить, что регулирование глубины дерева должно уменьшить размер учебной модели дерева без уменьшения точности ее прогноза или с помощью перекрестной проверки. Есть много методов регулирования глубины дерева, которые отличаются измерением оптимизации производительности.

Сокращение дерева может осуществляться сверху вниз или снизу вверх. Сверху вниз - обрезка начинается с корня, снизу вверх - сокращается число листьев дерева. Один из самых простых методов регулирования - уменьшение ошибки ограничения дерева. Начиная с листьев, каждый узел заменяется на самый популярный класс. Если точность предсказания не влияет, то изменение сохраняется.

При принятии решений менеджер может использовать один из приведенных выше методов. Лучшие решения принимаются группой. Эффективность групповых решений во многом зависит от руководителя. С учетом умений, характера и настроения руководителя, его педагогических способностей, внимания к людям и других качеств психологи выделяют пять типов руководителей: диктатор, демократ, пессимист, организатор и манипулятор.

Метод, основанный на научно-практическом подходе, требует использования современных технических средств и прежде всего электронно вычислительной техники.

В целом проблема выбора руководителем решения - одна из важнейших в современной науке и практике управления.

Математические методы и модели в принятии решений

Введение!

Цель моделирования - процесс исследования объекта на разных уровнях - от качественного до точного количественного, по мере осуществления сбора информации и развития модели.

В математической области методы и модели понимаются как комплексные категории, которые в себя включают:

    методы в принятии решений;

    методы исследования операций;

    экономико-математический методы;

    методы экономической кибернетики;

    методы оптимального управления;

    прикладную математику в экономике;

    прикладную математику в организации производства.

Этот список не является полным, что свидетельствует о широком диапазоне математических методов и моделей. В различных источниках, содержание которых касается представленной тематики, математические модели и методы рассматриваются в тех или иных сочетаниях.

Практическое доказательство обозначенной мысли возможно на примере известного метода «теории вероятностей», который представлен в рамках математических моделей широким классом и включает в себя такие понятия, как «вероятность», «случайное событие», «случайная величина», «математическое ожидание (среднее значение) случайной величины», «дисперсия (рассеяние)» и т.п. В конце XIX - начале XX вв. выделяется новый объект, который представляет собой коммутированную систему телефоной связи, подразумевающую такие понятия, как «заявка на соединение», «отказ», «время ожидания соединения», «коммутация» и тому подобные элеметы.

Математическая теоретико-вероятностная модель процессов в коммутированных телефонных сетях была образована в 20-х гг. в результате соединения представленного метода и объекта. Автором подобной операции стал А.К. Эрланг. В качестве примера существующих понятий данной модели можно отметить:

    «поток заявок»;

    «среднее время ожидания»;

    «средняя длина очереди на обслуживание»;

    «дисперсию времени ожидания»;

    «вероятность отказа».

Последующее развитие этого научного направления продемонстрировало результативность понятийных категорий симбиозной модели, выявило ее масштабную конструктивную функцию.

Данная модель в процессе своего развития трансформировалась в метод исследования сложных систем. В качестве примера можно выделить «теорию массового обслуживания», категориальный аппарат которой перестал восприниматься как неотъемлемая составляющая телефонных сетей. Терминология и понятийная база приобрели общетеоретический характер. Так, организация новых моделей может осуществляться посредством применения теории массового обслуживания к таким объектам, как производственные процессы, операционные системы, ЭВМ, транспортные потоки и т.п.

В результате очевидным представляется вывод, что метод является в полной мере сформированным в случае развития однородной совокупности моделей. Степень исследования объекта же напрямую зависит от количества разработанных моделей объекта. Двойственная сущность модели формирует, в свою очередь, дуализм категориального аппарата моделирования, который интегрирует в себя понятия общие или специфичные, образованные от «метода» и «объекта», соответственно.

Иными словами, методы, модели, объекты организуют непрерывную последовательность, которая подразумевает наличие различных групп моделей, образующихся в соответствии со спецификой своего происхождения и применяемости. Среди таких групп можно выделить:

    модели, которые предполагают взаимодействие раннее разработанных методов и новых объектов;

    модели, впервые созданные с целью осуществления описания конкретного объекта, при этом новые модели могут быть применимы и по отношению к другим объектам.

Линейное программирование - математическая дисциплина, посвящённая теории и методам решения экстремальных задач на множествах n -мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.

Целочисленное программирование - разновидность линейного программирования, подразумевающая, что искомые значения должны быть целыми числами.

Раздел математического программирования, в котором изучаются методы нахождения экстремумов функций в пространстве параметров, где все или некоторые переменные являются целыми числами.

Простейший метод решения задачи целочисленного программирования - сведение ее к задаче линейного программирования с проверкой результата на целочисленность.

Потоки в сетях

Деятельность современного общества тесно связана с разного рода сетями - возьмите, к примеру, транспорт, коммуникации, распределение товаров и тому подобное. Поэтому математический анализ таких сетей стал предметом фундаментальной важности.

ГЕОМЕТРИЧЕСКОЕ ПРОГРАММИРОВАНИЕ - раздел , изучает определенный класс оптимизационных задач , встречающихся главным образом в инженерно-экономических расчетах. Основное требование метода состоит в том, чтобы все технические характеристики проектируемых объектов были выражены количественно в виде зависимостей от регулируемых параметров . Геометрическим такой вид программирования назван потому, что в нем эффективно используется геометрическое среднее и ряд таких геометрических понятий, как векторные пространства , векторы , ортогональность и др.

НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ - раздел математического программирования , изучающий методы решения экстремальных задач с нелинейной целевой функцией и (или) областью допустимых решений , определенной нелинейными ограничениями .

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ - 1. Основное понятие математической теории оптимальных процессов (принадлежащей разделу математики под тем же названием - О. у.); означает выбор таких управляющих параметров , которые обеспечивали бы наилучшее с точки зрения заданного критерия протекание процесса или, иначе, наилучшее поведение системы , ее развитие к цели по оптимальной траектории . Эти управляющие параметры обычно рассматриваются как функции времени , что означает возможность их изменения по ходу процесса для выбора на каждом этапе их наилучших (оптимальных) значений.

ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ - раздел исследования операций , который рассматривает разнообразные процессы в экономике, а также в телефонной связи, здравоохранении и других областях, как процессы обслуживания, т. е. удовлетворения каких-то запросов, заказов (напр., обслуживание кораблей в порту - их разгрузка и погрузка, обслуживание токарей в инструментальной кладовой цеха - выдача им резцов, обслуживание клиентов в прачечной - стирка белья и т. д.).

ТЕОРИЯ ПОЛЕЗНОСТИ - теоретическое направление в экономической науке, развитое представителями австрийской школы в XIX-XX вв., основанное на базисном объективном понятии "полезность", воспринимаемом как удовольствие, удовлетворение, получаемое человеком в результате потребления благ. Основной принцип теории полезности - закон убывающей предельной полезности , согласно которому приращение полезности, получаемое от одной добавленной единицы блага, непрерывно убывает.

Теория принятия решений - междисциплинарная область исследования, представляющая интерес для практиков и связанная с математикой, статистикой, экономикой, философией, менеджментом и психологией; изучает, как реальные лица, принимающие решение, выбирают решения и насколько оптимальные решения могут быть приняты.

Теория игр - математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу - в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.

Имитационное моделирование - метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.

Динамическое программирование – это раздел математики, посвящённый теории и методам решения многошаговых задач оптимального управления.

Эффективность в общем виде – это результативность чего-либо (производства, труда, управления и т.д.). В экономической теории различают в основном два вида эффективности – экономическую и социальную. Экономическая эффективность характеризует отношение полученного результата к затратам, социальная – степень удовлетворения спроса населения (потребителей, заказчиков) на товары и услуги. Часто их объединяют единым термином – социально-экономическая эффективность, который в наибольшей степени относится к оценке управленческих решений, так как последние направлены на состояние и поведение людей и таким образом имеют высокое социальное значение и их оценка только с позиций экономического эффекта не совсем корректна. В последние десятилетия растет необходимость оценки по многим управленческим решениям экологической эффективности, отражающей как положительное, так и отрицательное влияние их реализации на экологическую обстановку. Здесь, как правило, отражаются возможные затраты организации на устранение отрицательного воздействия на окружающую среду, штрафы и другие связанные с этим платежи или их экономия при положительном воздействии на окружающую среду.

Качество – с позиций философии – выражает совокупность существенных признаков, особенностей и свойств, которые отличают один предмет или явление от других и придают ему определенность. Качество результата труда (продукции, услуги, инвестиционного проекта, управленческого решения и т.д.) связано с понятиями "свойство" и "полезность". Свойство результата труда определяет объективные стороны без оценивания его важности для потребителя (например, технический уровень продукции, проекта); полезность – способность данного результата труда приносить пользу и удовлетворять требованиям конкретного потребителя. Отсюда, качество управленческого решения – совокупность свойств, обусловливающих его способность удовлетворять определенные потребности в соответствии с назначением. В практике деятельности организаций эффективность и качество неразрывны и взаимно обусловливают друг друга. Решение не может быть высокоэффективным, если оно имеет низкое качество и, наоборот, оно не может быть качественным, если неэффективно, т.е. эффективность одна из характеристик качества, а качество – существенный фактор эффективности.

Эффективность и качество управленческого решения определяются всей совокупностью процессов управления, составляющих его относительно самостоятельные и взаимосвязанные в технологическом цикле этапы: разработка, принятие и реализация решений. В соответствии с этим необходимо рассматривать модификации управленческого решения – эффективности и качества теоретически найденного, принятого ЛПР и практически реализованного решения.

На этапах разработки и принятия управленческого решения его качество – это степень соответствия параметров выбранной альтернативы решения определенной системе характеристик, удовлетворяющая его разработчиков и потребителей и обеспечивающая возможность эффективной реализации. На этапе реализации качество управленческого решения выражается в его фактической эффективности, эффективности реализации.

К числу основных характеристик, определяющих качество решений, относятся: обоснованность, своевременность, непротиворечивость (согласованность), реальность, полнота содержания, полномочность (властность), эффективность.

Обоснованность решения определяется: степенью учета закономерностей функционирования и развития объекта управления, тенденциями развития экономики и общества в целом, компетентностью его разрабатывающих специалистов и ЛПР. Оно должно охватывать весь спектр вопросов, всю полноту потребностей управляемого объекта. Для этого необходимо знание особенностей, путей развития управляемой системы и внешней среды. Требуется тщательный анализ ресурсного обеспечения, научно-технических возможностей, целевых функций развития, экономических и социальных перспектив компании, региона, отрасли, национальной и мировой экономики. Всесторонняя обоснованность решений требует поиска новых форм и путей обработки научно-технической и социально-экономической информации, форм и методов менеджмента, теории и практики разработки и принятия решений, т.е. формирования передового профессионального мышления, развития его аналитико-синтетических функций. Обоснованным может быть лишь то решение, которое принято на основе достоверной, систематизированной и научно обработанной информации, что достигается использованием научных методов разработки и оптимизации решений.

Таким образом, обоснованность решения обеспечивается следующими основными факторами:

  • учетом требований объективных экономических законов и закономерностей, действующего законодательства и уставных документов;
  • знанием и использованием закономерностей и тенденций развития объекта управления и его внешней среды;
  • наличием полной, достоверной, своевременной информации;
  • наличием специальных знаний, образования и квалификации разработчиков и ЛПР;
  • знанием и применением ЛПР основных рекомендаций менеджмента и теории принятия решений;
  • используемыми методами анализа и синтеза ситуаций.

Нарастающая сложность и комплексность решаемых проблем и их последствий требует универсальных познаний для разработки и принятия обоснованных управленческих решений, что обусловливает все более широкое распространение коллегиальных форм принятия решений.

Обоснованность управленческих решений может достигаться выполнением следующих действий:

  • определение условий для формирования допустимых вариантов;
  • составление перечня показателей, характеризующих существенные свойства найденных вариантов решения, и разработка шкал для их измерения;
  • отсев нерациональных вариантов и определение диапазона возможных значений каждого показателя с использованием разнообразных математических и эвристических методов;
  • выявление структуры предпочтений ЛПР;
  • формирование критерия или правил оценки вариантов решения;
  • выбор наилучшего варианта управленческого решения или уточнение структуры предпочтений ЛПР.

Реализация этих действий не всегда гарантирует высокое качество и эффективность решений, так как выбор альтернатив существенно затрудняется следующими факторами.

  • 1. Многоаспектный характер оценок эффективности альтернатив. При определении возможных вариантов решения и тем более при выборе из них наиболее целесообразного приходится производить экономическую, технико-технологическую, социальную, политическую, экологическую оценки. При этом каждая имеет несколько подходов. Например, стоимостная оценка, согласно международным, европейским и российским стандартам, использует затратный, рыночный (сравнительный) и доходный подходы, в которых используются различные методы в зависимости от объекта и задач оценки. При выборе вариантов развития открытого акционерного общества необходимо учитывать всю совокупность стейкхолдеров, так как принимаемые решения могут существенно влиять на различные группы людей, что увеличивает количество возможных оценок (как по отношению к ним, так и с их стороны). Во многих случаях необходимо учитывать изменения оценок во времени. При этом все чаще возникают проблемы учета новых типов оценок, которые характеризуют последствия принимаемого решения в разные моменты будущего.
  • 2. Трудности выявления и сопоставления всех аспектов сравнения альтернатив. Существование разнородных аспектов оценки альтернатив ставит перед разработчиками и ЛПР трудные проблемы их сопоставления. Здесь следует иметь в виду, что такое сопоставление субъективно и поэтому может быть подвергнуто критике. Это усугубляется во много раз при коллегиальном принятии решений, где у каждого из членов принимающего решения коллективного органа могут быть разные меры сопоставления разнородных качеств. Одни участники разработки и принятия решений могут быть заинтересованы в основном в экономических критериях, другие – в политических, третьи – в экологических и т.д.
  • 3. Субъективный характер оценок эффективности и качества альтернатив. Многие оценки эффективности и качества альтернатив можно получить либо путем построения специальных моделей, либо путем сбора и обработки экспертных заключений. Оба способа связаны с использованием субъективных оценок либо специалистов разрабатывающих модели, либо экспертов. При выборе альтернатив необходимо учитывать, что надежность подобных субъективных оценок не может быть абсолютной. Даже при полном единодушии экспертов возможна ситуация, когда их оценки окажутся неправильными. Возможно также существование различных моделей либо несовпадение оценок экспертов. Следовательно, несколько альтернатив могут иметь разные оценки, и результат выбора зависит от того, какие из них будут использованы ЛПР.

Своевременность управленческого решения означает, что принятое решение не должно ни отставать, ни опережать потребности в нем развития ситуации. Даже самое оптимальное (из целесообразных для ЛПР) решение, рассчитанное на получение наибольшей социально-экономической эффективности, может оказаться бесполезным, если будет принято поздно. Оно даже может принести определенный ущерб. Преждевременные решения не менее вредны для организации, чем запоздалые. Они не имеют условий, необходимых для реализации и развития, и могут дать импульсы для развития негативных тенденций, не способствуют решению уже "перезревших" задач и еще более усугубляют и без того болезненные процессы.

Непротиворечивость (согласованность ). Различают внутреннюю и внешнюю непротиворечивость решения. Под внутренней непротиворечивостью решений понимается соответствие целей и средств их достижения сложности решаемой проблемы и методов разработки решения, отдельных положений решения друг другу и смыслу решения в целом. Под внешней непротиворечивостью решений – их преемственность, соответствие стратегии, целям компании и ранее принятым решениям (действия, необходимые для реализации одного решения, не должны мешать выполнению других). Достижение сочетания этих двух условий и обеспечивает согласованность и непротиворечивость управленческого решения. Согласованность с принятыми ранее решениями означают также необходимость соблюдения четкой причинно-следственной связи общественного развития. Принятые ранее решения при необходимости должны отменяться или корректироваться, если они вступают в противоречия с новыми условиями деятельности управляемой системы. Появление противоречащих друг другу решений – следствие плохого познания и понимания законов общественного развития, проявления низкого уровня управленческой культуры.

Реальность. Решение должно разрабатываться и приниматься с учетом объективных возможностей организации, ее потенциала. Другими словами, материальные, финансовые, информационные и другие ресурсы, возможности организации должны быть достаточны для эффективной реализации выбранной альтернативы.

Полнота содержания решений означает, что решение должно охватывать всю совокупность параметров управляемого объекта, необходимых для обеспечения достижения целей, все сферы его деятельности, все направления развития. Содержание управленческого решения должно отражать:

  • цель (совокупность целей) функционирования и развития управляемого объекта, на который направлено решение;
  • ресурсы, используемые для достижения этих целей;
  • основные пути и способы достижения целей, основные методы выполнения работ, определяющих реализацию целей решения;
  • сроки достижения целей, начало и окончание их обеспечивающих работ;
  • порядок взаимодействия между подразделениями и отдельными работниками.

Итак, управленческое решение может считаться качественным, если оно отвечает всем перечисленным выше требованиям. Причем речь идет именно о системе требований, поскольку несоблюдение хотя бы одного из них приводит к снижению качества решения и, следовательно, к потере эффективности, трудностям или даже невозможности его реализации.

Качество и эффективность управленческого решения определяются множеством факторов, действующих в течение всего технологического цикла управления или на отдельных его стадиях, имеющих внутрисистемный или внешний (влияние окружающей среды), объективный или субъективный характер. К наиболее существенным факторам относятся:

  • законы объективного мира, связанные с принятием и реализацией управленческого решения;
  • формулировка цели; для чего принимается управленческое решение, какие реальные результаты могут быть достигнуты, как измерить, соотнести поставленную цель и достигнутые результаты;
  • объем и ценность располагаемой информации – для успешного принятия управленческого решения главным является не столько объем информации, сколько ее ценность, определяемая уровнем профессионализма, опыта, интуицией кадров;
  • время разработки управленческого решения – как правило, управленческое решение всегда принимается в условиях дефицита времени и чрезвычайных обстоятельств (дефицита ресурсов, активности конкурентов, рыночной конъюнктуры, непоследовательного поведения политиков);
  • организационная структура управления, определенная организационными документами (формальная) и фактически существующая (неформальная). Фактически существующая (действующая) структура управления практически в исключительных случаях совпадает с определяемой соответствующими организационными документами, в рамках которой требуется действовать всем работникам организации. Необходимость учета этого требования нередко является условием принятия не самого оптимального варианта решения;
  • формы и методы управленческой деятельности, в том числе разработки и реализации управленческого решения;
  • состояние управляющей и управляемой систем (психологический климат, авторитет руководителя, профессионально-квалификационный состав кадров и т.д.);
  • система оценок уровня качества и эффективности управленческого решения;
  • степень риска, связанная с последствиями реализации решения. Данный фактор требует применения различных методик оценки рисков (финансовых, экономических и т.д.); соответственно, руководитель должен обладать навыками выполнения такого анализа;
  • средства оргтехники, включая ИВС. Применение современных информационных систем – мощный фактор активизации процесса разработки, принятия и реализации решений. Оно требует определенных знаний и навыков использования современных информационных технологий в управлении деятельностью организаций;
  • субъективность оценки варианта выбора решения. Процесс принятия решения, выбор конкретного варианта имеет творческий характер и зависит от конкретной личности, ее состояния в момент принятия решения. Личностные оценки ЛПР выступают в качестве компаса, указывающего ему желательное направление, когда приходится выбирать между альтернативами действий. Каждый человек обладает своей системой ценностей, которая определяет его действия и влияет на принимаемые решения. К личностным факторам относятся:
  • – психологическое состояние ЛПР в момент принятия решения. В состоянии раздражительности, загруженности другими решениями ЛПР может принять по данной ситуации одно решение, а в хорошем настроении, будучи относительно свободным – другое,
  • – мера ответственности ЛПР, определяемая как внутренним чувством ответственности за свои действия, так и регламентирующими его деятельность документами,
  • – уровень знаний по данному вопросу. Чем выше уровень знаний ЛПР об объекте, на который направлено решение, и его внешней среде, тем больше вероятность принятия ими качественного и эффективного решения,
  • – опыт, который как основной ресурс разработки и осуществления решений является определяющим фактором адекватного восприятия реальной оценки и эффективной реакции ЛПР на происходящее, представляет собой определенный банк апробированных и адаптируемых вариантов, в котором черпаются аналоги и прообразы разрабатываемых, принимаемых и реализуемых решений,
  • – интуиция, суждение (здравый смысл) и рациональность ЛПР.

Справка. Интуиция проявляется как некоторое озарение или мгновенное понимание ситуации без использования рационального мышления. Однако подобному озарению обычно предшествует долгая и кропотливая работа сознания. Сначала посредством наблюдения информация накапливается в памяти человека, систематизируется и располагается в определенном порядке. Часто таким путем приходят к целесообразному решению проблемы. Если этого не происходит, подключаются интуиция и воображение, порождающие многочисленные идеи и ассоциации. Одна из идей может вызывать интуитивное прозрение, которое как бы выталкивает соответствующую идею из подсознания в сознание. Интуиция – это мощный инструмент принятия решений, который нуждается в постоянном развитии и должен активно использоваться в управленческой деятельности.

При принятии решения ЛПР часто основывается на собственном ощущении того, что его выбор правилен. Интуиция развивается по мере приобретения опыта. В основе решений, основанных на суждении, лежат знания и осмысленный опыт прошлого. Используя их и опираясь на здравый смысл, с поправкой на сегодняшний день, выбирают тот вариант, который принес наибольший успех в аналогичной ситуации в прежнее время. Однако здравый смысл у людей, с точки зрения автора, встречается редко, поэтому данный способ принятия решений гоже не очень надежен, хотя подкупает своей быстротой и дешевизной. При таком подходе ЛПР стремится действовать преимущественно в тех направлениях, которые ему хорошо знакомы, в результате чего рискует упустить хороший результат в другой области, сознательно или бессознательно отказываясь от вторжения в нее;

Выбранный ЛПР критерий стратегии риска: оптимизма, пессимизма или безразличия. Критерий оптимизма (maximax) определяет выбор альтернативы, которая максимизирует максимальный результат для каждой альтернативы; пессимизма (maximin) – альтернативу, которая максимизирует минимальный результат для каждой альтернативы; безразличия – альтернативу с максимальным средним результатом (при этом действует негласное предположение, что каждое из возможных состояний управляемой системы может наступить с равной вероятностью: в результате выбирается альтернатива, дающая максимальную величину математического ожидания).

На стадии реализации эффективность решений определяют следующие факторы:

  • уровень развития и состояния управляемой системы, ее техники, технологии, персонала (кадров), организации и экономики. При высоком уровне развития всех компонентов управляемой системы при реализации решения может быть получена бо́льшая эффективность, чем предусмотренная решением, и наоборот, при низком уровне достаточно трудно обеспечить эффективность, определенную в решении;
  • социально-психологический климат в реализующем решение коллективе. Основным критерием социально-психологического климата выступает уровень зрелости коллектива, под которым понимается степень совпадения индивидуальных и коллективных интересов. Чем выше уровень зрелости коллектива, тем он более управляем, что является необходимым условием его эффективной деятельности;
  • авторитет руководителей, обеспечивающих реализацию решения. Чем выше авторитет руководителей, тем более управляем коллектив и, соответственно, выше уровень эффективности его деятельности;
  • действенность механизма управления деятельностью коллектива, которая выражается в сущности управления как создание условий, побуждающих людей к необходимым для достижения целей действиям;
  • время реализации решения. Своевременно принятое качественное и эффективное решение при несвоевременной его реализации может оказаться не только неэффективным, а ненужным;
  • соответствие численности и квалификации (образования, умения и опыта) кадров объему и сложности работ по реализации решения. При численности кадров меньше необходимой для реализации решения сложно соблюсти ее сроки. При квалификации работников ниже требуемого уровня снижается качество выполнения работ и вместе с этим эффективность реализации решения;
  • обеспеченность необходимыми материальными, энергетическими, трудовыми, информационными и денежными ресурсами.

Выше было показано, что эффективность решения определяется на этапах его разработки и реализации. На первом этапе она определяется по известным методикам расчета эффективности проектных решений, на втором – как правило, но методикам расчета фактической прибыли и рентабельности деятельности. В последние годы для определения эффективности стратегических решений на этапах их разработки и реализации часто используется расчет предполагаемого и фактического изменения рыночной стоимости бизнеса, результаты которого являются основой оценки и выбора стратегии организации.

Оценку эффективности управленческих решений на этапах их разработки и принятия можно производить по общеизвестным показателям оценки инвестиционных проектов:

  • чистый дисконтированный (приведенный, текущий) доход (ЧДД) – NPV (Net Present Value ) – текущая стоимость денежных притоков (доходов) за вычетом стоимости денежных оттоков (инвестиционных затрат);
  • внутренняя норма доходности (ВНД) – IRR (Internal Rate of Return ) – ставка дисконтирования, при которой возникает равенство текущей стоимости прогнозируемых денежных притоков (доходов) и текущей стоимости прогнозируемых инвестиционных затрат (денежных оттоков), т.е. чистый текущий доход (NPV) при этом равен нулю;
  • модифицированная внутренняя норма доходности (МВНД) – MIRR (Modified Internal Rate of Return ) – показатель, характеризующий эффективность капиталовложений (инвестиций). Если текущую стоимость всех инвестиционных

вложений рассмотреть как первоначально вложенный капитал, а будущую стоимость всех денежных притоков – как наращенную сумму, то ставкой дисконтирования коэффициента наращения принимается МВНД;

  • индекс рентабельности (ИР) – PI (Profitability Index ) – величина чистого (дисконтированного) денежного потока, приходящегося на единицу инвестиционных вложений;
  • срок окупаемости – РР (Payback Period ) – ожидаемый период возмещения вложенных средств чистыми денежными поступлениями;
  • дисконтированный срок окупаемости – DPP (Discounted Payback Period ) – предполагаемый период возмещения (равенства) текущей стоимости вложенных средств и текущей стоимости чистых денежных поступлений;
  • коэффициент эффективности затрат – ARR (Accounting Rate of Return ) равен отношению прогнозной среднегодовой чистой (балансовой) прибыли к среднегодовым инвестиционным затратам.

Эти показатели широко применяются на практике, и методы их расчета признаны традиционными. В многочисленной литературе они подробно описаны, приведены примеры, иллюстрирующие их расчеты для выбора проектов (альтернатив) управленческих решений с различными исходными условиями.

Данные показатели, равно как и соответствующие им методы, используются в двух вариантах:

  • для определения эффективности независимых (безальтернативных) управленческих решений (так называемая абсолютная эффективность), когда делается вывод о том, принять его или отклонить;
  • для определения эффективности взаимоисключающих друг друга альтернатив решения (сравнительная эффективность), когда делается вывод о том, какую из них принять в качестве управленческого решения.

В оценке эффективности управленческих решений, как и любой другой деятельности, участвуют результаты его реализации (эффект – Эр) и затраты на его разработку, принятие и реализацию (Зр). Эффект управленческих решений проявляется в конечных результатах деятельности организации. Даже в тех случаях, когда управленческое решение направлено на изменения технико-экономических или социально-экономических показателей деятельности организации (уровня состояния и развития техники и технологии производства, номенклатуры и ассортимента продукции, качества исходного сырья, конструктивных характеристик рабочих помещений, социальной инфраструктуры и др.), эффект его реализации отражается в конечном счете в изменении уровня использования ее потенциала и удовлетворения общественных потребностей в ее продукции и услугах, т.е.

Эр = f (П, Ип, Зр, Уп)

при (П – Ип), Зр š min; Уп š max,

где П – потенциал организации; Ип – его использование; Уп – уровень удовлетворения общественных потребностей в ее продукции и услугах.

Данный подход, получивший название "ресурспо-потпенциальный ", к оценке эффективности управления деятельностью организаций, продуктом которого выступают управленческие решения и результаты их реализации, был предложен академиком АН СССР В. А. Трапезниковым, обоснован и развит профессорами Ф. М. Русиновым и В. И. Бусовым.

Развитие организации (ее потенциала, отнесенного к той или иной цели, выраженной в стремлении к максимально возможному удовлетворению определенного вида общественных потребностей) имеет ограничения, определяемые соотношением спроса и предложения на продукты и услуги, которые способна производить данная организация. Превышение результата по той или иной функции предприятия имеющихся в нем потребностей – отрицательный эффект его деятельности или неполезный результат, равносильный отходам и потерям затраченных на него ресурсов.

Вторая составляющая эффективности – затраты ресурсов на разработку, принятие и реализацию управленческого решения. Повышение уровня отдачи этих затрат (их эффективности) – важнейшая задача управления процессом разработки, принятия и реализации управленческих решений. Неправильное понимание этой задачи (особенно в части разработки и принятия решений) часто приводит на практике к сокращению этих затрат даже в ущерб эффективности управленческих решений. Это связано с тем, что основную долю затрат часто составляет заработная плата и начисления на нее и сокращение их сводится к сокращению участвующего в данном процессе персонала или уровня оплаты его труда, в результате чего ухудшаются качество управленческого решения и эффект от его реализации, мотивация персонала. Сокращение затрат на разработку, принятие и реализацию управленческих решений путем простого волюнтаристического решения влечет за собой уменьшение эффективности деятельности организации, связанное с ухудшением контроля, увеличением времени ожидания принятия решения по той или иной ситуации, ухудшением качества подготовки, выработки и принятия решений и с другими факторами, влияющими на уровень потерь ресурсов.

Оценку эффективности реализации управленческих решений можно производить по каждому крупному управленческому решению или по совокупности реализованных в определенный период времени (например, квартал, полугодие, год). Она состоит из системы показателей (рис. 3.5), включающей:

  • обобщающий интегральный показатель, конкретизирующий критерий эффективности;
  • обобщающие показатели, отражающие эффективность реализации групп целей, для достижения которых принято управленческое решение (научно-технических, экономических, социальных и др.);
  • частные показатели, отражающие эффективность использования отдельных видов ресурсов по отдельным стадиям воспроизводственного цикла.

При определении эффективности реализации управленческого решения используется величина не потенциала ресурсов организации вообще, а ее потенциала по выполнению функций, которые охватывает данное решение. Для выявления такого состава можно использовать матрицы, приведенные в табл. 1.2–1.5.

Уровень использования потенциала определяется как разница его величины и потерь. Причем резервная часть потенциала, необходимая для устойчивого функционирования и развития любого подразделения организации, не относится к его потерям.

Рис. 3.3.

Приведенная на рис. 3.5 система показателей отражает структуру "дерева" целей повышения эффективности деятельности организации.

Эффективность управленческого решения определяется как

где Ентц и Энтц, Епц и Эпц, Есц и Эсц, Еэкц и Ээкц – эффективность и эффект управленческого решения в достижении научно-технических, производственных, социальных и экологических целей соответственно; Эi, – эффект реализации управленческого решения в t-м подразделении организации (рабочем месте подразделения); Зр – затраты на разработку и реализацию управленческого решения; п – количество подразделений, участвующих в разработке и реализации данного управленческого решения.

Эффект участия i -го подразделения организации (рабочего места) в разработке и реализации управленческого решения определяется как сумма эффектов изменений уровня использования в процессе, на который направлено данное решение, имеющегося потенциала подразделения (рабочего места) – внутренний эффект (Эв) – и результата реализации целей решения – внешний эффект (Эц), т.е.

Эi = Эв + Эц.

Внутренний эффект определяется по интенсивным (Эи) и экстенсивным факторам (Ээ), т.е.

Эв = Эи + Ээ.

Интенсивные факторы определяют обусловленные реализацией данного управленческого решения изменения производительного использования потенциала, экстенсивные – изменения непроизводительного использования потенциала и потерь ресурсов.

Схема расчета показателей эффективности управления деятельностью предприятия приведена на рис. 3.6.

Так как все ресурсы поступают на рабочие места организации и здесь используются, то уровень использования потенциала ресурсов предприятия определяется процессами на его рабочих местах. Изменение уровня производительного использования ресурсов на рабочем месте определяется разницей использования потенциальной выработки (или производительности труда) на данном рабочем месте до и после реализации данного управленческого решения, т.е.

где и Вп – потенциальная выработка на данном рабочем месте соответственно до и после реализации управленческого решения; , и Вф – фактическая выработка на данном рабочем месте соответственно до и после реализации управленческого решения.

Фактическая выработка (или производительность труда) в каком-либо производственном подразделении (заготовительном, механическом, литейном, сборочном и т.д.) определяется без особых трудностей по общепринятым методикам оценки.

Рис. 3.6.

Потенциальная и фактическая выработка на рабочем месте составляют основу определения потенциальной и фактической выработки по подразделению, функции или виду деятельности подразделения. На объем выработки на рабочем месте влияют: производительность оборудования при данной технологии работ, выполняемых на данном рабочем месте; соответствие квалификации работника уровню сложности работ; своевременность обеспечения рабочего места необходимыми материалами, инструментом, оргоснасткой, информацией и другими ресурсами; соответствие количества и качества исходных ресурсов требованиям технологии; ритмичность деятельности работника на рабочем месте. Эти факторы снижают фактическую выработку по сравнению с потенциальной.

Потенциальная выработка рабочего места (Вп(рм)) определяется объемом выработки установленного на нем оборудования при максимальном числе часов сто работы в данном периоде с учетом времени на переналадку, ремонт, наладку, т.е. по формуле

Βп(рм) = (Фр – t н) П n ,

где Фр – режимный фонд времени работы одного агрегата (строительного крана, бульдозера, бетономешалки, циклевочной машины и т.д.) на рабочем месте в месяц; t н – нормативное время на наладку и ремонт, переналадку одного агрегата; П – режимный (технологический) съем продукции с единицы оборудования (агрегата) в единицу времени; п – количество однотипных агрегатов на рабочем месте при многостаночном обслуживании.

Для рабочих мест с маломеханизированным и ручным трудом, в том числе инженерных и управленческих работников, потенциальная выработка рассчитывается по максимальной сменной выработке месяца, исходя из того, что максимальная выработка в данную смену была достигнута за счет наибольшего использования возможностей ресурсов, составляющих данное рабочее место, т.е.

Вп(рм) = Вс.max т р,

где Вс.max – максимальная сменная выработка на рабочем месте в расчетном месяце, нормо-часы; m – количество смен в расчетном месяце; р – стоимость 1 нормо-часа, руб.

Исходные данные для расчета берутся из карт учета выработки и заработной платы, которые должны заполняться в подразделениях предприятия.

Аналогичный подход можно применить для любого рабочего места, но для механизированных и автоматизированных рабочих мест Вп следует рассчитывать по производительности оборудования.

Зная потенциальный объем выработки в месяц по всем рабочим местам подразделения, можно определить потенциальный объем выработки данного подразделения. Он рассчитывается по технологической цепочке рабочих мест, образуемой системой машин, участвующих в производстве данного вида продукта, или определяемой последовательностью выполнения закрепленных за рабочими местами технологических операций производства данного вида результата деятельности подразделения.

Экстенсивное использование экономического потенциала по внутреннему эффекту процессов системы управления предприятием выражают потери и технологически необоснованные отходы ресурсов. Изменение их величины после реализации управленческого решения () по сравнению с базовым (Пр) отражает изменение внутреннего эффекта управления по экстенсивным факторам, т.е.

.

Участвующие в процессах ресурсы используются производительно и непроизводительно.

Производительное использование ресурсов также подразделяют на две части. Первая часть – это расход ресурсов, рассчитанный исходя из удельных затрат, которые признаны рациональными (технологически необходимыми). Вторая часть – это расходы ресурсов, превышающие рациональные удельные затраты. Такие затраты представляют собой потери ресурсов.

Непроизводительное использование ресурсов наблюдается в случае, когда продукция и услуги не создаются. Например, к непроизводительному использованию ресурсов относятся затраты рабочего времени работников, затраты производственной мощности оборудования и материалов на исправление брака, к потерям – прогулы, целодневные и целосменные простои, неиспользованные мощности установленного оборудования, неисправимый брак, неиспользуемые научно-технические разработки, порча материалов на складе и др.

Эффект реализации управленческого решения по достижению производственных целей определяется увеличением объема и качества продукции и услуг, соблюдением сроков их предоставления потребителю и выражается в изменении эффективности их применения у потребителей; научно-технических целей – в эффективности применения разработок предприятия в инновационных процессах; социальных целей – в экономии времени (увеличении свободного времени) и повышении общественной активности работников предприятия и потребителей продукции и услуг предприятия; экологических целей – в уменьшении отходов и увеличении объемов их утилизации, благоустройстве территории и т.д. Эффект по социальным результатам особенно важен для предприятий, производящих различные услуги населению (коммунальные, транспортные, бытовые, почтовые, общественного питания, торговли и т.д.). Эффект по экологическим результатам – для предприятий топливной, нефтехимической и химической промышленности.

Затраты на разработку и реализацию управленческого решения включают всю совокупность затрат на выполнение работ как собственными силами, так и сторонними организациями (подрядчиками), а также на приобретение необходимых материалов, оборудования и других необходимых ресурсов.

Вышеизложенный подход применим только в условиях наличия в организации необходимых исходных данных, обеспечиваемых организованной системой контроля и учета параметров процессов на рабочих местах и в подразделениях, мониторинга потребностей и потребления продукции и услуг компании.

В странах с развитой экономикой давно является хрестоматийным стоимостный подход в управлении организациями и, соответственно, в оценке эффективности управленческих решений.

Справка. На американском рынке капитала стоимостная концепция является широко распространенной на практике и единственно принимаемой в научной литературе. В мае 2010 г. компания KPMG в сотрудничестве с Государственным университетом – Высшей школой экономики (ГУ-ВШЭ) провели исследование применения российскими компаниями методов управления на основе стоимости. Оно показало высокую актуальность стоимостного управления для российских компаний в сложившейся рыночной ситуации и интерес для менеджеров, так как рост стоимости бизнеса обусловливает повышение инвестиционной привлекательности и конкурентоспособности организации.

Основная идея концепции управления стоимостью заключается в том, что главной финансовой целью организации выступает рост ее ценности (стоимости) не только для собственников (акционеров), но и для всех заинтересованных в деятельности компании юридических и физических лиц (управление стоимостью компании в интересах стейкхолдеров). Понятие "стоимость" в данной концепции управления представляет собой внутреннюю категорию, характеризующую ценность, инвестиционную привлекательность компании для собственников, и выражается в денежном индикаторе будущих возможностей роста.

Прирост стоимости – это экономический критерий, отражающий интегральный эффект влияния реализуемых в организации управленческих решений на все параметры, по которым оценивается ее деятельность (доля рынка и прочность конкурентной позиции, доходы, инвестиционные потребности, операционная эффективность, налоговое бремя, регулирование, потоки денежных средств и уровень риска), позволяющий ранжировать варианты в ситуации множественного выбора.

В системе управления стоимостью изначально заложена предпосылка, что командно-административный стиль принятия управленческих решений "сверху вниз" не приносит должных результатов, особенно в крупных многопрофильных корпорациях. Менеджерам низшего звена нужно научиться использовать стоимостные показатели для принятия более качественных и эффективных управленческих решений. Управление стоимостью требует разумного равновесия долгосрочных и краткосрочных целей деятельности. Оно, по сути, представляет собой разработку, принятие и реализацию управленческих решений, обеспечивающих непрерывную реорганизацию, направленную на достижение максимальной стоимости бизнеса.

Важным достоинством стоимостного подхода в управлении является тот факт, что он предлагает менеджменту единый и понятный критерий оценки деятельности – стоимость. Параметр прироста стоимости бизнеса является ключевым инструментом повышения качества и эффективности управленческих решений, позволяющим создать универсальную систему координат для определения вектора развития бизнеса, а также создать единую шкалу изменения достигнутых результатов в соответствии с установленной стратегией.

Процесс управления рыночной стоимостью компании использует в качестве базы доходный подход к оценке компании (бизнеса). В рамках данного подхода стоимость компании представляет собой сумму денежных потоков, которые будут созданы компанией, скорректированных с учетом факторов времени и соответствующих рисков, за вычетом всех обязательств компании.

Оценка эффективности управленческого решения данным методом предполагает сравнение двух сценариев развития организации "без разработки и реализации управленческого решения данной ситуации-проблемы" и "при условии разработки и реализации управленческого решения данной ситуации-проблемы".

Оценка стоимости организации в первом варианте сводится к прогнозу денежных потоков по предприятию в целом при условии, что ничего в нем в расчетном периоде принципиально меняться не будет. Это – дисконтированная стоимость бизнеса, которая определяется путем дисконтирования денежного потока по ставке, учитывающей имеющиеся риски организации в целом:

где PV 0 – дисконтированная стоимость организации при ее развитии без решения имеющихся ситуаций-проблем; CF 0i – ожидаемый денежный поток в периоде г; r – ставка дисконта; п – количество периодов, в течение которых организация будет генерировать денежные потоки (в годах).

Стоимость организации при сценарии реализации управленческого решения (стратегическая стоимость) определяется путем дисконтирования скорректированного на проект денежного потока по скорректированной ставке, учитывающей как риск организации в целом, так и риски управленческого решения. Она будет равна остаточной текущей стоимости ожидаемых потоков организации при условии осуществления управленческого решения, т.е. денежные потоки организации по двум сценариям ее развития совмещаются:

где PV C – стратегическая стоимость организации; CF c – стратегический денежный поток организации; CF pi – денежный поток, создаваемый реализацией управленческого решения.

Применение метода рынка капитала и сделок для оценки прироста стоимости предприятия за счет реализации управленческого решения основывается на информации о компании-аналоге, реализующей аналогичное решение. При этом аналогичность решений определяется следующими факторами:

  • максимальная схожесть решаемых ситуаций в сопоставляемых организациях;
  • общая отраслевая (функциональная) принадлежность сопоставляемых ситуаций;
  • использование сходных ресурсов;
  • сопоставимость масштаба ситуаций и радикальности изменений в результате реализации управленческого решения.

Для определения прироста стоимости, созданной в результате реализации управленческого решения, методом рынка капитала используются рыночные коэффициенты компании-аналога до и после реализации ею решения аналогичной ситуации, т.е.

где ΔCV – увеличение рыночной стоимости оцениваемой компании вследствие реализации управленческого решения; Е ок – текущая прибыль оцениваемой компании; – отношение "цена/прибыль" для аналогичной компании после реализациирешения аналогичной ситуации; – отношение "цена/прибыль" для аналогичной компании до реализации решения аналогичной ситуации.

Метод сделок отличается от метода рынка капитала тем, что коэффициент "цена/прибыль" по компании-аналогу (компаниям-аналогам) рассчитывают, принимая во внимание лишь цены на акции компании-аналога (компаний-аналогов), которые наблюдались в ближайшем прошлом по фактическим сделкам купли-продажи крупных пакетов или при соответствующей котировке акций. При этом крупными пакетами считаются те, покупка которых дает возможность приобрести как минимум участие в контроле над компанией посредством введения в ее совет директоров своего представителя (или самого себя), что позволяет контролировать менеджмент компании. Отсюда, найти компанию-аналог, реализующую управленческое решение по аналогичной ситуации, информация по которой имеется в открытом доступе, – задача крайне сложная и порой просто неосуществимая. На практике это значительно затрудняет или делает невозможным применение методов рынка капитала и сделок для оценки эффективности управленческих решений.

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ПРИНЯТИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

Кравчук Алина Сергеевна

Студентка 4 курса, кафедра экономической кибернетики ВНАУ. г. Винница

Черняк Наталия Ивановна

научный руководитель, к.т.н., доцент ВНАУ, г. Винница

Введение. На современном этапе развития рыночных отношений, при сложных экономических и информационных связях между субъектами хозяйствования, в процессе управления предприятием возникают проблемы, зависящие от значительного количества внешних и внутренних факторов, быстро изменяющиеся во времени и разнонаправлено влияющие на эффективность функционирования предприятия. В таких условиях при разработке и принятии управленческих решений необходимо учитывать условия неопределенности, анализировать их, использовать соответствующие модели и методы принятия решений.

Анализ последних исследований и публикаций. Проблемы разработки и принятия управленческих решений в условиях неопределенности рассмотрены в работах таких отечественных и зарубежных ученых, как Р. Акофф, И.О. Бланк, В.В. Витлинский, В. Г. Вовк, А. К. Камалян, Ю. Г. Лысенко, М. Мескон, Д. О. Новиков, В. С. Пономаренко, О. И. Пушкарь, Т. Саати, Г.Саймон, Э. А. Трахтенгерц, Р. А. Фатхутдинов, Дж. Форрестер и др.

Целью исседования является изучение модели принятия решений в условиях неопределенности, базирующейся на теоретико-игровой концепции с применением классических критериев оценки альтернатив из множества возможных вариантов.

Основные результаты исследования. Неопределенность - фундаментальная характеристика недостаточной обеспеченности процесса принятия экономических решений знаниями относительно определенной проблемной ситуации. Неопределенность можно трактовать и детализировать как недостоверность, неоднозначность .

Для обоснования решений в условиях неопределенности, когда вероятности возможных вариантов обстановки неизвестны, разработаны специальные математические методы, которые рассматриваются в теории игр. Теория игр исследует взаимодействие индивидуальных решений при некоторых предположениях относительно принятия решений в условиях риска, общих условий окружающей среды, кооперативного или некооперативного поведения других индивидов. Целью теории игр есть предвидение результатов стратегических, оперативных игр, когда участники не имеют полной информации о намерениях друг друга .

Пусть информационная ситуация характеризуется множеством

Где – множество решений (альтернатив) объекта управления,

– множество состояний неопределенной экономической среды,

– функционал оценивания (матрица оценивания), определенный на и и тот, который .

Качество принимаемого решения, а также методика его принятия, зависят от степени информированности субъекта управления. Под информационной ситуацией с точки зрения субъекта управления подразумевают определенную степень градации неопределенности выбора средой своих состояний в момент принятия решения .

Рассмотрим классификатор информационных ситуаций, связанных с неопределенностью среды:

И 1 первая информационная ситуация характеризуется заданным распределением априорных вероятностей на элементах множества состояний среды;

И 2 вторая информационная ситуация характеризуется заданным распределением вероятностей с неизвестными параметрами или факторами среды (достаточная по объему информация, выдвинута гипотеза относительно класса функций, которому принадлежит функция плотности распределения вероятности и на основе имеющейся информации необходимо оценить параметры, которые характеризуют этот класс функций);

И 3 третья информационная ситуация характеризуется заданной системой линейных или нелинейных соотношений на элементах априорного распределения состояний среды.

В пределах первой – третьей информационных ситуаций в условиях неопределенности среды и риска при осуществлении процесса принятия эффективных решений используют критерии Байєса, модульный, минимальной дисперсии, Гермейера, максимакса .

И 4 четвертая информационная ситуация характеризуется неизвестным распределением вероятностей на элементах (параметрах, факторах и т.п.) множества состояний среды. В такой ситуации целесообразно использование критериев Джейнса, Лапласа;

И 5 пятая информационная ситуация характеризуется антагонистическими интересами среды, в процессе принятия решений оценку альтернатив осуществляют за критериями Вальда, Севиджа;

И 6 шестая информационная ситуация характеризуется как промежуточная между И 1 и И 5 при выборе среды своих состояний в процессе принятия решений за критериями Гурвица, Ходжа-Лемана.

Приведенные информационные ситуации являются глобальными характеристиками степени неопределенности состояний с точки зрения субъекта управления .

Пусть функционал имеет положительный ингредиент (задача оптимизации категорий полезности, выигрыша, прибыльности, вероятности достижения определенной стратегии), т.е.

, (1)

И пусть для отрицательного ингредиента (оптимизации расходов, ущерба, риска), т.е.

, (2)

Функция риска при осуществлении определенной стратегии определяется как линейное преобразование положительно или отрицательно заданного ингредиента функционала V к относительным единицам измерения составляющих функционала V .

Так, для и определенной информационной ситуации, а также для зафиксированного состояния среды , величина риска равна:

,

Для соответственно

Таким образом, риск определяется как разность решения при наличии точных данных состояния среды и результата, который может быть достигнутым, когда данные состояния среды не определенные.

Определение альтернатив осуществляется при условиях, например, информационных ситуаций І 1 – І 6 соответственно по критериям:

(критерий Вальда); (3)

Критерий Вальда выражает позицию крайней осторожности. Это свойство разрешает считать данный критерий одним из фундаментальных.

(критерий Севиджа); (4)

Критерий Севиджа довольно часто используется в практической деятельности при принятии управленческих решений на продолжительный период: например, при распределении капитальных вложений.

(критерий Лапласа); (5)

Критерий Лапласа используется при условии, когда вероятности возможных состояний систем неизвестны, т.е. в условиях полной неопределенности.

(критерий максимакса); (6)

С помощью критерия максимакса определяется стратегия, которая максимизирует максимальные выигрыши для каждой информационной ситуации.

(критерий Гермейєра); (7)

Критерий Гермейера является критерием крайнего пессимизма с учетом вероятности состояний внешней среды.

Переменные определяют объемы ресурсов в значении прибыли , или расходов , следовательно, зная цену за единицу ресурсов, которые предлагаются к расходам, можно рассчитывать объемы прибыли или потерь от осуществления той или другой стратегии относительно оптимальных альтернатив.

Если эксперты не могут (или имеют сомнения) определить состояние внутренней среды ресурсов в определенный период их использования к условиям поведения внешней среды за информационными ситуациями И 1 И 6 , то проводится оценивание альтернатив за всеми критериями . Определение оптимальной альтернативы в этом случае осуществляется так называемым методом голосования, сущность которого состоит в выборе той альтернативы, за которую проголосовало наибольшее количество экспертов.

Выводы. Неопределенность – это непреодолимое качество рыночной среды, обусловленное влиянием большого количества разных по природе и направленности факторов, которые в совокупности невозможно оценить или измерить. При формировании управленческого решения в условиях неопределенности использования одного из приведенных критериев недостаточно для рационального выбора решения, так как может привести к к значительным потерям экономического, социального и иного содержания. Необходимо учитывать фактор времени, объединять критерии между собой и проводить анализ критериев на уже известных ситуациях для проверки достоверности полученных результатов. Целесообразно также же объединять применение данных критериев с методом экспертных оценок.

Список литературы:

1. Арефьева А. А. Модели принятия экономико-организационных решений повышения эффективности использования производственного потенциала и критерии целесообразности его применение / А. А. Ареф"єва, В. М. Михайленко, О. Л. Горяча // Проблемы информационных технологий. – 2007. – № 1. – С. 14-23.

2. Витлинский В. В.Экономический риск: игровые модели: Учебн. пособие / В. В. Витлинский, П. И. Верченко, А. В. Сигал, Я. С. Наконечный; За ред. д-ра экон. наук, проф. В. В. Витлинского. – К.: КНЭУ, 2002. – 446 с.

3. Клименко С. М., Дуброва О. С.Обоснование хозяйственных решений и оценка рисков: Учебн.-метод. пособ. для самост. изуч. дисц. – К.: КНЭУ, 2006. – 188 с.

4. Левикин В. М. Влияние информационных технологий на реинжиниринг бизнес-процессов предприятия / В. М. Левикин, М. Г. Капустин // Новые технологии. – 2005. – № 3 (9). – С. 73.

5. Петров Э. Г. Управление функционированием и развитием социально-экономических систем в условиях неопределенности / Э. Г. Петров, Н. А. Соколова, Д. И. Филипская // Вестник Херсонского национального технического университета. – 2007. – Вып. 27. – С. 156–159.

Специалисты по информационным системам считают, что состояние любого объекта управления можно охарактеризовать некоторой неопределенностью, или энтропией (H0 = -logPo), выступающей в роли информационного потенциала, обусловливающего переход системы в другое состояние, т. е. наступление какого-либо события, вероятность которого равна P0 .
В практической деятельности целью всякого управляющего является изменение состояния системы, т. е. оказания воздействия, приведшего ее к новому устойчивому состоянию (событию) Руст, которому будет соответствовать другое значение информационного потенциала (Нуст = -logH^), где Руст - вероятность события от приложенного управляющим воздействия на систему.
Тогда мы можем утверждать, что сущность управления, осуществляемого источником информации (руководителем), можно охарактеризовать некоторым информационным напряжением
(4.11)
P ст
DHопт. _ H0 Hуст.
= = DJ упр 5
P
т. е. DHопт »DJупр.
Таким образом, руководители, занимающиеся производственной деятельностью, являются источником управляющей информации. Это следует понимать таким образом. Руководитель человеко-машинного комплекса или ОТС должен обладать таким потенциалом (источником информационного напряжения), которое равно логарифму отношения вероятности правильно принятого решения (Р0), приводящего к вероятности перехода системы в устойчивое состояние Руст, функционирование которого будет осуществляться без дополнительного воздействия на объект управления. Или, другой пример, пусть проректор по информации является источником управляющей информации для всех вычислительных подразделений, имея информационное напряжение, равное вероятности выполнения плана информатизации УлГТУ без дополнительных средств.
Из вышеприведенного следует, что информационное напряжение, т. е. суть источника АН, может быть как положительным, так и отрицательным. Если Руст = Р0, то напряжение источника равно нулю (АН = 0), и тогда роль руководителя в управлении несущественна, бессмысленна, т. е. он не управляет процессом.
Важно теперь то, что мы можем перейти от содержательного описания процесса управления к математическому, но для этого необходимо выбрать единицу измерения информационного потенциала, отождествляя формальное описание энтропии с информационной энтропией и в зависимости от выбора основания логарифма в (4.11) мы приходим к понятию «информационная энтропия», которую будем измерять в битах.
Многие авторы информационную энтропию отождествляют с термодинамической, что на самом деле соответствует физической реальности. В нашем случае пользоваться для измерения информационного напряжения битами можно только при условии, если использовать двоичные логарифмы, как предлагается в работе . Однако не следует информационное напряжение путать с информацией, которая тоже измеряется в битах, это существенно важно.
Для убедительности сказанного рассмотрим пример. Подсчитаем информационное напряжение, которым обладает система охраны компьютерной техники в лабораториях ИЦ МФ. Пусть важнейшим объектом является информационный сервер МФ, на котором хранится вся информация, и при его разрушении или ликвидации нарушается весь учебный процесс факультета. Предположим, что операцию ликвидации сервера проводят два человека, один из которых при срабатывании сигнализации успел сбежать. В этом случае, не имея возможности задержать обоих похитителей, охранники, не владеющие оперативной связью между собой, захватят одного из похитителей с вероятностью
равной 0,5 (Р0 = 0,5). Если же действия охраны согласованы между собой, то они нейтрализуют этого субъекта с возможной вероятностью, равной 1. Тогда имеем, что АН = log2 = 1 бит. Согласно определению логарифма, получим показательное уравнение вида 2х = 1, принимая х = 0, напряжение источника информации (охраны) составит 1 бит.
Следует указать, что согласно рассмотренному примеру, источник с напряжением 1 бит способен передать сколь угодно большое количество информации объекту управления в зависимости от времени, которым он будет располагать. Также важно отметить, что информационное напряжение источника может изменять во времени свое значение, т. е. знак, если важность достижения цели неодинакова в различные моменты времени. Используя математические выражения, описывающие работу автоматических систем управления , для определения переменного информационного напряжения можно воспользоваться формулой
2
ґр Л
уст
V P0)
1 t
IJ
T
dt = o(AH),
log
(4.12)
AH д =
1 ¦ J dt =
которая выражает среднеквадратическое напряжение o(AH). Для случайных изменений сути сигнала х можно воспользоваться выражением
? ? AH0 = Jf (x)AH ¦ dx; A^ = Jf (x)AH2 ¦ dx,
-оо
-оо
где АН0 и АНД - средние и действующие значения сущности сигнала; f(x) - плотность распределения вероятности Р события.
Если AH = A sin
v T)
, то согласно (4.12) действующее значение переменно-
A
го информационного напряжения составляет AH д = -=, что в 1,5 раза меньше
V2
максимального мгновенного значения напряжения.
Эта информация, выданная источником управления, т. е. управляющим, поступает к исполнительным органам («активным элементам») информационной нагрузкой источника, а затем по цепи обратной связи возвращается снова в источник. Обратную связь обеспечивают те же элементы, что и прямую.
Если исполнительные органы являются пассивными и не обладают памятью, они характеризуются только информационным сопротивлением (IR). Следует отметить, что IR - это время (t), т. е. время исполнения управляющего ука-зания.
Более точно IR системы равно времени (tR) исполнения задания от момента получения указания до поступления доклада о его выполнении. При этом время
(tR) для принятия самого решения, т. е. осмысления формулировки, является
внутренним информационным сопротивлением (R В нр) источника информации
(управляющего), которое является обратным пропускной способности системы (Imax) источника информации. И, следовательно, для систем без памяти имеет место информационный закон, аналогичный закону Ома для электрической цепи
ii = (4.13)
FH
где FH = Fn - Бвт - информационное сопротивление нагрузки; Бп и F^ - информационное сопротивление соответственно всей цепи и внутреннее сопротивление источника; I - информационный поток (ток) в цепи нагрузки.
При однократном достижении цели сквозь систему управления проходит информация (1ц), численно равная напряжению источника информации
I, = IFh = DH = DI упР. (4.14)
При длительной работе в течение времени (t) через данную цепь протекает информация
t t DH
1 УПР = J Idt = J-dt. (415)
0 0 Гн
Важно понимать, что эффективность управления зависит не от количества информации и даже не от качества, а насколько она способствует достижению цели, т. е. от ее ценности. Таким образом, ценность информации в первую очередь необходимо связывать с целью, с точностью формулировки задачи. Под качеством информации мы будем понимать степень ее искажения, которая зависит от элементов информационной цепи.
Таким образом, мы можем иметь большой поток информации, но если она не способствует достижению цели и не является точной, например, из-за искажения, поэтому и не будет иметь ценности.
На основании данной методики расчета количества информации, циркулирующей в информационной цепи, появляется также возможность выполнения оценок качества принимаемых решений, что позволяет использовать классические математические процедуры оценивания для решения задач оптимизации.
Подобные задачи рассматриваются в работе .
Известно, что любая задача становится более конкретной, когда она выражена в математической форме. Чтобы поставить математическую задачу, отражающую сущность производства информационных работ, следует к необходимым условиям, изложенным выше, прибавить достаточные, а именно:
уметь пользоваться методикой информационной оценки в сложившейся ситуации;
иметь управляющего, способного нейтрализовать дестабилизирующие факторы, влияющие на данную вероятностную систему.
В работе показано, как вероятностные динамические задачи представляются в виде детерминированных, в рамках которой исследуемые объекты описываются функциями многих переменных, а варьируемые параметры являться их аргументами. Таким образом, принимая ИЦ за вероятностную динамическую систему, его модель можно представить в виде функций многих переменных х = х(х1, ..., хт), где х = f(I); I - информация.
В задачах, не требующих точного решения, можно воспользоваться приближенной оценкой состояния объекта, принимая при этом во внимание только наиболее важный выходной показатель, например, пропускную способность f(x), т. е. эффективность. Тогда, обозначая остальные параметры через функцию ф8(х), s = 1, 2, ..., m, мы приходим к задаче оптимального выбора вектора параметров х. Эта задача представляет собой вычислительный алгоритм, записываемый в виде процедуры оценивания и оптимизации:
max f (x),
(4.16)
>
xeS
S{x: x є X с Rn, js(x) Нам требуется максимизировать показатель качества f(x) на множестве S, заданной системой ограничений, которые сформулированы выше. Здесь элемент х принадлежит множеству S, если хєХ, где Х - некоторое подмножество n-мерного пространства Rn, при выполнении неравенства ф3(х) Обычно множество Х определяет ограничения на допустимые значения варьируемых параметров х типа условий неотрицательности xj>0 или принадлежности интервалу xj А неравенства ф3(х) Существенно важно, что с математической точки зрения сформулированную задачу можно также трактовать как процесс планирования в условиях неопределенности для динамической системы. Тогда она сводится к решению вероятностной задачи линейного программирования, которая с учетом (4.16) записывается в более удобной форме:
max MюCj(w)y L
w
(4.17)
j=1
S^x: xє X,P\ ?asj(w)xj Ls,S = 1,2,...,m.
sJw j s J=!
где Mw - операция усреднения случайной величины w, а Y есть функция f(xj), характеризующая важнейший показатель анализируемой системы, например, пропускную способность комплекса или его эффективность. Оператор усреднения в общем виде записывается в виде
Mw{y(x,w)}=Y(x),
который определяет функцию Y(x) как математическое ожидание случайного вектора y(x,w). Функция Y(x), заданная случайными величинами js(x,w), является вероятностной.
В формулах (4.16) и (4.17) функции f(x) и ф3(х) были заданы алгоритмически, а не аналитически, поэтому мы оперируем случайными величинами, которые математически обозначаются в виде f(x, w) и js(x, w), так что в более строгой форме имеем
f(y)= Mw{f(y,w)},
js(x)= Mw{js(x,w)}. (4.18)
Следует указать, что Y - детерминированная величина, а q(w) является коэффициентом целевой функции.
Условия аВсе случайные параметры, входящие в (4.17), позволяют учесть колебания (отклонения) затрат (z) на выпуск продукции (y) c учетом несвоевременной поставки комплектующих изделий, ЗИПа, программно-технического обеспечения и прочих случайных факторов, в условиях которых функционирует система (вычислительный комплекс).
Чтобы удовлетворить условия задач (4.16) и (4.17), необходимо подобрать
n
вектор х так, чтобы случайное неравенство вида 2 asj(w) ? bs(w) выполнялось
j=1
с вероятностью, равной Ls, и тогда задачу (4.17) можно представить в более простом виде
f(y, w) = 2 Cj(w)y,
j=1
(4.19)
js (x, w) = Ls - 1
j=1
где Ls(w) характеризует совокупность случайных факторов, например, зависящих от поставщиков и потребителей.
Таким образом, рассматриваемая задача относится к разряду вероятностных, потому что условия, в которых существует и функционирует комплекс,
являются неопределенными и зависимыми от многих непредвиденных обстоятельств, не известных непосредственному руководству.
Сформулированная и поставленная задача позволяет связать все важнейшие параметры в систему и учесть случайные факторы, которые в реальной практике существуют всегда.
Данная постановка задачи позволяет отвлечься от содержательной формулировки и перейти к построению математической модели управления, используя теорию автоматического регулирования .
Чтобы практически решить эту задачу управления с заданным качеством выпускаемой продукции, в нее необходимо ввести процедуры принятия оперативного решения, которые должны быть легко адаптированы в целевую функцию. При этом параметры x;=f(I), т. е. выполнение плана x;, можно заменить на количество переработанной информации (I), используя информационные цепи.
Так как решение общей математической задачи управления в рамках данной работы не представляется возможным из-за ее сложности, поэтому мы ее будем представлять в виде отдельных простейших подзадач.
Такая процедура упрощения сложной задачи на практике достигается за счет предварительного согласования отдельных подзадач с непосредственными лицами высшего звена управления, в компетенцию которых относится их решение. Тем самым мы приводим многофакторную задачу к одношаговой, детерминированной. Но, с другой стороны, т. к. в одношаговых задачах принятия решения определяется не величина и характер управляющего воздействия (Н), а непосредственное значение переменной состояния 0 объекта, которое обеспечивает достижение стоящей перед ИК цели, поэтому управляющего высшего уровня не интересует, каким способом будет решена данная задача. Ему важен конечный результат. Следовательно, для конкретного руководителя нижнего уровня задача принятия решения будет считаться заданной, если в нее включены все необходимые параметры, дающие возможность произвести оценку состояния объекта на данный момент времени (t). Тогда в данном конкретном случае задача принятия решения для него будет считаться детерминированной при условии, если определены пространство состояния природы 0 с распределением вероятностей ^(u) для всех ue 0, пространство решений х и критерий качества принятого решения. Взаимосвязь между этими параметрами будем называть целевой функцией (Fq).
Целевую функцию F4, выражающую в явном виде цель, можно рассматривать как одну из важнейших выходных величин объекта управления и обозначим ее через (g). Тогда целевая функция является скалярной величиной, зависящей от состояния природы u и от состояния объекта управления 0. В этом случае сформулированную задачу в математической форме можно представить в виде
g = 0(x, u).
Это и есть математическая модель одношаговой детерминированной задачи принятия решения. Она представляет собой тройку взаимосвязанных параметров, которые можно записать в виде следующей зависимости:
G=(x, 0, q), (4.20)
где q - скалярная функция, определяемая на прямом произведении множеств (ХХ0), тогда G=f(g).
*
Решение этой задачи состоит в нахождении такого х є Х, которое обращает в максимум функцию g, т. е. удовлетворяет условию
X = {x є X: Q(x,u) = max}. (4.21)
Здесь Х=х1, х2, ..., хт - перечень плановых мероприятий ИЦ, при m?N, где N - переменные величины - число плановых мероприятий(задач). Существует несколько методов решения одношаговой задачи.
Представляя переменную Х как количество переработанной информации I в процессе производства вычислительных работ, мы можем записать, что х=Щ), и воспользоваться информационным способом оценки принятия решения. Поэтому при необходимости имеем право произвести оценку деятельности информационного центра в битах.
Опираясь на системные принципы, мы пытались формализовать рутинную работу руководителя информационного подразделения и перевести на научную основу, представив ее в виде задачи управления, с целью повышения оперативности принятия решения в неопределенных условиях.



Загрузка...