novomarusino.ru

Особенности эксплуатации аппаратов с горючими газами. Анализ пожарной опасности аппаратов

В технологическом оборудовании с твердыми веществами и материалами горючая среда может образоваться при тепловом воздействии на последние или в результате их самовозгорания. Как известно, сами твердые горючие вещества и материалы не способны образовывать в смеси с воздухом горючую среду. Однако, в процессе их нагрева до некоторой температуры может начаться процесс разложения с выделением летучих веществ. Так, в процессе пиролиза древесины при температурах 150-275 0 C происходит разложение менее термостойких ее компонентов с выделением оксида углерода, уксусной кислоты, метана водорода и других веществ. Выделяющиеся продукты разложения в смеси с окислителем при определенных условиях могут образовывать горючую смесь. В таких случаях оценку возможности образования горючей среды в технологическом оборудовании производят, как в случае с газами.

Технические аппараты с горючими пылями характеризуются значительной пожарной опасностью. При работе систем пневмотранспорта образуется очень большое количество пыли. Пыли в таких аппаратах могут находиться взвешенном в воздухе состоянии (аэрозоль) и в осевшем состоянии (аэрогель), потому что В первом случае пожарная опасность пылей рассматривается как для газов и паров, во втором случае – как для твердых веществ и материалов.

Взвешенная в воздухе пыль может образовываться взрывоопасные концентрации. Для оценки возможности образования горючей среды внутри технологического оборудования с пылевидными материалами на практике используют значения нижнего концентрационного предела распространения пламени φ н. Верхние концентрационные пределы для пылей настолько велики, что практического значения для оценки пожарной опасности не имеют. Кроме того, пылевоздушные смеси в большей степени, чем паровоздушные и газовоздушные, склонны к расслоению. Поэтому в оборудовании даже при очень высоких концентрациях всегда могут образоваться локальные зоны с концентрацией ниже ВКПР.

Из четырехстороннего строгально-калевочного станка

Weinig Hydromat 23 пыль с опилками удаляется по пневмотрубопроводу типа «Циклон». В трубопроводе, особенно на изгибах и местах швов и стыков, будет образововаться скопление пыли. Необходимо прочищать трубопровод от оставшегося мусора с переодичностью, зависящей от объемов, времени использования станка и времени указанного производителем системы аспирации.

Нижний концентрационный предел аэрозольной древесной пыли равен 11,2 г/м куб. Рабочий концентрационный предел древесной пыли складывается из аэрозольной и аэрогельной пыли, именно поэтому так важно вовремя очищать аппараты от осевшей пыли.

2.3 Анализ образования горючей среды в помещениях

При рассмотрении вопроса о выходе пылей в помещение основное внимание должно быть уделено оценке запыленности помещений с учетом осажденности пыли (аэрогеля), которая может тлеть и гореть, создавая пожарную опасность, а при определенных условиях переходить во взвешенное состояние, образуя с воздухом взрывоопасные смеси.

Основные профилактические мероприятия:

  • переход на менее пылящие технологические процессы;
  • использование обеспыливающих устройств;
  • регулярная очистка помещений от пыли.

В производственных помещениях и на открытых технологических площадках горючие пылевоздушные смеси могут образоваться в двух характерных случаях;

1) при выходе горючих веществ из нормально действующих технологических аппаратов

2)при выходе горючих веществ из поврежденного технологического оборудования

На деревообрабатывающем заводе ЗАО ЗСК «ИНКОН» используется калибровально-шлифовальный станок консольного типа Cindy , в результате работы которого в производственное помещение выбрасывается большое количество взвешенной пыли, которая оседает на технологическом оборудовании и помещении. Осевшую пыль после каждой работы станка удаляют два пылесоса Rupes KS 260. Пыль собирается в мешки объем каждого 2 м куб. и складируется рядом со станком.

Опилки и пыль образованные в результате работы торцовочного станка фирмы OMGA с нижним расположением пилы Т620 ST собираютв 2 короба объемом 4 м куб. После наполнения коробов, опилки вывозят за пределы цеха на временный склад.

Горючая смесь может образоваться в результате нарушения герметичности трубопровода системы аспирации внутри цеха. В результате аварии под давлением помещение цеха будет заполняться взвешенной пылью. Чтоб этого не случилось необходимо рассмотреть причины аварии трубопровода.

Повреждение технологического оборудования, работающего под вакуумом, может вызывать подсос воздуха внутрь аппаратов. В зависимости от начальной рабочей температуры в объеме аппарата могут возникнуть те же характерные ситуации, что и при выходе горючих веществ наружу. Опасность взрыва внутри аппарата при этом повышается. Поэтому часто локальные повреждения аппаратов, работающих под вакуумом, заканчиваются полным разрушением в результате взрыва горючей смеси, образующейся в их объеме.

Вибрация технологического оборудования возникает в результате повторяющихся с определенной частотой изменений внутреннего давления или при воздействии внешних возмущающих сил и представляет собой определенной частоты и амплитуды механические колебания технологического оборудования или отдельных его элементов.

Вибрация чаще всего приводит к появлению локальных повреждений во фланцевых соединениях, сварных швах. Если же кроме вибрации аппарат испытывает другие воздействия (например, избыточное давление), то может произойти и полное разрушение аппарата.

Источники вибрации: приводы электродвигатель, сами машины и агрегаты с подвижными элементами и – пилы

Опасность вибраций резко повышается, если частота собственных колебаний аппарата или трубопровода будет совпадать с частотой колебаний возмущающей внешней или внутренней силы (когда наблюдается так называемое явление резонанса).

На практике качественно оценить наличие вибрации можно по колебанию аппаратов и трубопроводов визуально или прикосновением руки, по наличию разрушенной теплоизоляции, образовавшимся проемам в стенах в местах проходов технологических коммуникаций, по нарушению мест крепления аппаратов и трубопроводов и т. п. Количественно вибрацию оценивают с помощью специальных приборов - вибрографов.

Механический износ материала стенок аппарата или трубопровода под действием движущейся среды называется эрозией.

Эрозия происходит при обтекании стенок потоком твердых, жидких или газообразных веществ, а также при действии электрических разрядов. Частицы вещества, ударяясь о материал стенки, разрушают ее поверхностный слой, толщина стенки постоянно уменьшается равномерно или в виде локальных мест разрушения.

Эрозионному износу больше подвержены стенки аппаратов и трубопроводов в местах изменения направления движения потока

Основные направления по предупреждению повреждений, вызванных механическими воздействиями:

Подача в аппараты очищенных веществ.

Своевременная очистка аппаратов от отложений в установленные инструкцией сроки.

Использование центробежных насосов.

Защита от вибрации:

устройство под источником вибрации массивных фундаментов, поглощающих механические колебания, изолированно от фундаментов несущих строительных конструкций зданий и сооружений; установка источника вибрации на различного рода эластичных прокладках, пружинах и т. п„ которые обеспечивают гашение механических колебаний;

систематический контроль за вибрацией и при необходимости устранением причин вибрации (центровка и балансировка валов вращающихся элементов машин и агрегатов, обеспечение надежного крепления источников вибрации и трубопроводов).

Защита от эрозии:

выбор материала для аппаратов и трубопроводов, устойчивый к данному виду эрозии;

увеличение поверхностной износоустойчивости стенки путем снижения шероховатости ее поверхности, повышения поверхностной твердости материала, созданием прочного защитного слоя футеровки и т. п.;

уменьшение турбулентности потока и механического воздействия струи путем выполнения плавных поворотов и переходов трубопроводов и снижения их количества, применения успокоителей, отражателей и рассекателей потоков и струй;

осуществление систематического контроля за толщиной стенки, не допуская ее уменьшения ниже нормы.

Массу горючего газа, ходящего наружу при полном разрушении аппарата m п, определяется пол формуле

m п = (V ап * P P / 10 5 *ε+ Σqiti+ΣЈјпр*fјпр* P P / 10 5)p r ,

где P P – рабочее давление среды в аппарате,Па; qi- производительность i-го компрессора или пропуская способность i –го трубопровода, питающего аппарата,м 3 /с; p r – плотность горючего газа при рабочей температуре среды в аппарате, кг/м 3 .

При разливе горючих жидкостей или сжиженных горючих газов (СГГ) в помещении или на территории промышленной площадки происходит их испарение с образованием зон ВОК (для горючей жидкости должно выполняться условие t p ≥ t всп).

Взрывоопасная смесь может занять весь объем помещения и выйти за его пределы.Взрывоопасное облако может дрейфовать по ветру на значительные расстояния до тех пор,пока оно не диффундирует в окружающую среду или не встретит на своем пути источник зажигания, воспламенявший её .Воспламенение облака приводит к появлению опасных факторов взрыва (избыточное давление взрыва и импульс волны давления),а также пожару разлившейся жидкости. Определяющими параметрами зоны ВОК являются расстояния Х НКПР, Y НКПР, Z НКПР (длина, ширина и высота),ограничивающие область концентраций, превышающих НКПР пламени, которые зависят от массы, физико- химических свойств разлившихся продуктов, температуры и подвижности окружающей среды.

Способы обеспечения пожарной безопасности. Пожаровзрывобезопасность производственных объектов в значительной мере достигается предупреждением повреждений и разрушений технологического оборудования, что обеспечивается одним из следующих способов или их комбинацией:

1.соблюдением технологического регламента ведения производственного процесса и техники безопасности;

2. максимальной механизации и автоматизацией технологических процессов;

3.Осществлением контроля за геометрическими характеристиками технологического оборудования;

4.проведением плановых ремонтных работ, дефектоскопии и рентгеноскопии наиболее ответственных технологических аппаратов;

5.соблюдением температурных режимов и режимов давления при эксплуатации технологического оборудования;

6.оанащением аппаратов независимыми измерителями уровня и манометрами слежения за режимами давления;

7.регулированием скорости наполнения (опорожнения) емкостных аппаратов жидкостью, которая не должна превышать суммарную пропускную способность установленных на нем дыхательных устройств;

8. обеспечением возможности перекачки продуктов из одного аппарата в другой при аварийной ситуации;

9. применением для сброса конденсата при расположении внутри аппаратов нагревательных элементов (например, парового змеевика, все соединения которого должны быть сварными);

10. применением двустенных аппаратов с заполнением межстенного пространства инертными газами ил негорючими жидкостями (азотом, аргоном,тосолом).

11.применением устройств защиты производственного оборудования с горючими веществами от повреждений и аварий, установкой отключающих,отсекающих и других подобных устройств, предохранительных клапанов и разрывных мембран;

12 заполнением гидравлических предохранительных клапанов трудно-оспаривающийся, некристаллизирующейся, неполимеризующейся в незамерзающей жидкостью;

13. применением огнепреграждающих устройств в оборудовании (искрогасителей, огнепреградителей)

14.применением антикоррозионной защиты оборудования;

15. выполнением требований действующих норм,правил и стандартов в области обеспечения пожарной и промышленной безопасности.

Тема:
Пожарная опасность выхода
горючих веществ из
нормально работающих
технологических аппаратов
1

Учебные вопросы:
1. Образование горючей среды при эксплуатации
аппаратов с дыхательными устройствами
2. Образование горючей среды при эксплуатации
аппаратов с открытой поверхностью испарения,
аппаратов периодического действия и герметичных
аппаратов,
работающих
под
избыточным
давлением
2

Литература
Основная:
1. Пожарная безопасность технологических
процессов. Учебное пособие/ Хорошилов О.А, Пелех
М.Т., Бушнев Г.В. и др.; Под общ. ред. В.С.Артамонова –
СПБ: Санкт-Петербургский университет ГПС МЧС
России, 2012.- 300 с.
Дополнительная:
2.В.Р. Малинин, О.А. Хорошилов. Методика
анализа пожаровзрывоопасности технологий: Учебное
пособие. - СПб: Санкт-Петербургский университет МВД
России, 2000.-274с.
3

1.
2.
3.
4.
5.
Нормативные документы:
Федеральный закон №123-ФЗ от 22.07.2008г.
«Технический регламент о требованиях пожарной
безопасности», в ред. 117-ФЗ.
ГОСТ Р 12.3.047-2012. Пожарная безопасность
технологических процессов. Общие требования.
Методы контроля.
СП 12.13130.2009. Определение категорий помещений,
зданий и наружных установок по взрывопожарной и
пожарной опасности.
ГОСТ 12.1.004-91. Пожарная безопасность. Общие
требования.
ГОСТ 12.1.044-89. Пожаровзрывоопасность веществ и
материалов. Номенклатура показателей и методы их
4
определения.

Выход веществ при
нормальной работе
технологического
оборудования
При
«большом»
дыхании
При
«малом»
дыхании
С
открытой
поверхности
испарения
При
эксплуатации
аппаратов
периодического
действия
из
герметичных
закрытых
аппаратов,
работающих под
повышенным
давлением
5

Вопрос 1. Образование горючей
среды при эксплуатации аппаратов с
дыхательными устройствами
6

Аппараты с дыхательными устройствами -
закрытые емкости, внутренний объем
которых сообщается с ок ружающей средой
через дыхательные устройства (дыхательные
трубы, клапана и т.п.).
К таким аппаратам относятся резервуары,
мерники, дозаторы и другие емкости, работа
которых по условиям технологии требует
изменения уровня жидкости.
7

8

Нижний температурный предел
распространения пламени (НТПР) и
верхний температурный предел
распространения пламени (ВТПР)- это
температурные пределы, в рамках
которых, в замкнутом объеме, смесь
паров жидкости с окислителем способна
воспламеняться от источника зажигания.
Измеряются в градусах по Цельсию °С
9

Образование горючей среды у дыхательных
уст ройств возможно, если рабочая температура
жидкости в аппарате больше или равна НТПР:
t p tн
Размер зоны горючих концентраций у
дыхательных устройств за висит от количества
выходящих паров, их свойств, конструкции ем
кости и самого дыхательного устройства и
многих других факторов.
10

«Большое» дыхание технологических
аппаратов с горючей испаряющейся
жидкостью - вытеснение паров при
значительном
изменении
уровня
жидкости в аппарате
«Малое» дыхание - выход паров горючей
испаряющейся жидкости при изменении
температуры окружающей среды
11


выходящих наружу при “малом дыхании”
аппаратов:
VСВ
m VСВ МАС
3
м
свободный объём резервуара,
МАС - разность массовых концентраций
3
кг
м
паров вещества ночью и днём,
12

МАС
Р ПАР М
Р VМ
где Рпар - перепад давления
насыщенных паров при изменении
температуры окружающей среды, кПа;
М – молярная масса вещества, кг кмоль-1;
Р - рабочее давление, кПа
Vм – молярный объём паров, м3 кмоль-1
13

Р РSД РSН
где РSД, РSН – давление насыщенных
паров при дневной и ночной
температурах, кПа.
14

Р0 V0 Т

Т
Р
0
где Р – атмосферное
давление,
0
кПа;
Т0 – температура окружающей
среды
при начальных условиях, К;
Т - рабочая температура, К.
15

Определение массы горючих паров,
выходящих наружу при большом
дыхании аппаратов:
VП М
m

Vп – объём паров находящихся в резервуаре, м3
VРЕЗ ОБ где Vрез- объём резервуара, м3

ОБ - объёмная концентрация
100
ОБ
РS
100%
Р
паров внутри резервуара,
% об
16

Герметизация аппаратов
путем установки
дыхательных
клапанов
Применение
газоуравнительных
систем
Устройство систем
улавливания и утилизации
выходящих через дыхательные устройства горючих
паров
Способы предупреждения образования горючей среды снаружи
аппаратов при использовании на них дыхательных устройств
Ликвидация паровоздушного пространства в
резервуарах
Окраска
аппаратов
в светлые
тона
Снижение количества
выбросов от
"малых дыханий"
Орошение
аппаратов
водой
Устройство
теплоизоляции
Вывод дыхательных
труб за пределы
помещения
Хранение
горючих
жидкостей в
подземных
емкостях
17

Вопрос 2.
Образование горючей среды при
эксплуатации аппаратов с открытой
поверхностью испарения, аппаратов
периодического действия и
герметичных аппаратов,
работающих под избыточным
давлением
18

При нормальных режимах работы
оборудования горючая среда на
технологических участках может
образовываться в том случае, если по
условиям технологии применяются:
1. Аппараты с открытой поверхностью
испарения
2. Аппараты, периодически открываемые
для выгрузки и загрузки веществ
3. Герметичные аппараты, работающие
под избыточным давлением
19

1. Аппараты с открытой поверхностью
испарения
Горючая концентрация паров жидкости в смеси с
воздухом над поверхностью аппаратов с открытой
поверхностью испарения будет образовываться в
том случае, если рабочая температура жидкости tр
будет выше ее температуры вспышки:
t p t всп
20

Способы предупреждения
образования горючей
среды при использовании
аппаратов
с открытой поверхностью
испарения
Замена
аппаратов с
открытой
поверхностью
испарения на
закрытые
герметизиров
анные
аппараты
Замена ЛВЖ
и ГЖ на
пожаробезопасные
жидкости
и составы
Поддержание
рабочей
температуры
горючей
жидкости
ниже
температуры
вспышки
Рациональны
й выбор
формы
открытого
аппарата
Устройство
местных
отсосов и
систем
улавливания
паров
21

2. Аппараты, периодически открываемые для
выгрузки и загрузки веществ
Оценка возможности образования горючей среды
в объеме помещений или локальных зонах в общем
случае может быть произведена путем сравнения
фактической концентрации горючих веществ ф со
значением нижнего концентрационного предела
распространения пламени н.
Горючая среда будет образовываться в том случае,
если выполняется условие
ф н
22

Способы предупреждения образования
горючей среды в помещениях при
использовании аппаратов
периодического действия
Замена
аппаратов
периодического действия на
герметичные
аппараты
непрерывного
действия
Герметизация
загрузочных и
разгрузочных
устройств
аппаратов
Устройство
систем
аспирации у
мест
сосредоточенного выхода
горючих газов,
паров и пылей
из аппаратов
Устройство
систем
аспирации из
внутреннего
объема
аппаратов с
открытой
выгрузкой
веществ
Очистка аппаратов от остатков продукта,
продувка инертным газом или
заполнение
водой при их
остановке на
длительный срок
23

Способы предупреждения образования горючей среды при
использовании аппаратов, работающих под избыточным давлением
Применение
сварки, пайки,
развальцовки
для
обеспечения
герметичности
неразъемных
соединений
Использование
легкодеформи-
руемых и из-
носоустойчи-
вых прокладок
для
герметизации
разъемных
соединений
Применение
оборудования
без
сальниковых
уплотнений
Устройство
отсосов паров
и газов
у мест
установки
сальниковых
уплотнений
Проверка
оборудования
на
герметичность
Развальцовка - круговая пластическая деформация пустотелого предмета
- расширение изнутри одного торца трубы, для того чтобы
придать ему форму небольшого раструба. В получившееся
развальцованное отверстие помещается труба с первоначальным
диаметром, и т. о. создается наиболее герметичное соединение

УТВЕРЖДАЮ

Заместитель начальника Красноярского

Учебного центра ФПС

Б.Ж. Касымов

2010.

ПЛАН – КОНСПЕКТ

для проведения занятий со слушателями «профессиональной подготовки пожарного ФПС МЧС России»

по дисциплине «Пожарная профилактика»

Раздел 3: «Пожарная безопасность промышленных объектов»

Тема 3.2: «Обеспечение пожарной безопасности технологического оборудования»

Цель занятия: - ознакомление с особенностями эксплуатации аппаратов с горючими газами, легко воспламеняющимися и горючими жидкостями, твердыми горючими материалами и пылями;

Ознакомления с причинами и условиями образования горючей среды в аппаратах, производственных помещениях;

Количество часов: 2 часа

Место проведения: Учебный класс

Метод проведения: Классно-групповой

Материальное обеспечение: Наглядные пособия, нормативные документы,

план-конспект.

Руководящие документы и литература:

1. Федеральный закон №123-ФЗ от 22.07.2008г. Технический регламент «О

требованиях пожарной безопасности».

2. СП 12.13130.2009. «Определение категорий помещений зданий и наружных установок по взрывопожарной и пожарной опасности».

3. ВНЭ 5-79 ППБО-103-79. «Правила безопасности при эвакуации предприятий химической промышленности».

4.В.С. Клубань «Пожарная безопасность предприятий промышленности и агропромышленного комплекса». Москва Стройиздат 1987г.

ХОД ЗАНЯТИЯ:

I. ПОДГОТОВИТЕЛЬНАЯ ЧАСТЬ - 10 мин.

· Проверка по списку – 1 мин.

· Опрос по ранее изложенному материалу – 8 мин.

1. Пожарная опасность зданий промышленных предприятий.

2. Общие положения по обеспечению пожарной безопасности промышленных

предприятий.

3. Требования пожарной безопасности к производственным зданиям.

· Объявление темы, цели занятия, рассматриваемых вопросов – 1 мин.

II. ОСНОВНАЯ ЧАСТЬ – 60 мин.

1. Введение.

2. Образование горючей среды внутри технологического оборудования при

нормальной работе.

3. Образование горючей среды при выходе веществ наружу из нормально действующих аппаратов.

4. Образование горючей среды в период пуска и остановки технологических

аппаратов.

5. Образование горючей среды при нарушении режима работы и повреждении технологических аппаратов.

6. Предотвращение распространения пожара.

III. ЗАКЛЮЧИТЕЛЬНАЯ ЧАСТЬ - 10 мин.

· Ответы на вопросы – 1 мин.

* Опрос по ранее изученному материалу – 7 мин.

1. Назвать причины образование горючей среды внутри технологического

оборудования при нормальной работе.

2. Назвать причины образование горючей среды при выходе веществ наружу из

нормально действующих аппаратов.

пожарной и взрывопожарной опасности.

* Подведение итогов – 1 мин.

* Задание на самоподготовку – 1 мин.

ПЛАН-КОНСПЕКТ составил

старший преподаватель Красноярского

учебного центра ФПС

подполковник внутренней службы

Т.А.Ульянова

2010г.

ПЛАН-КОНСПЕКТ

рассмотрен на заседании

предметной комиссии

2010г.

Протокол № ____

Старший преподаватель цикла специальных дисциплин

майор внутренней службы

Е.Н. Карелин

2010г.

Начальник цикла специальных дисциплин

Красноярского учебного центра ФПС

подполковник внутренней службы

Г.В.Сальникова

2010г.

Введение

Анализ пожарной опасности и защиты технологических процессов производств осуществляются поэтапно. Он включает в себя изучение технологии производства; оценку пожароопасных свойств веществ, обращающихся в технологических процессах; выявление возможных причин образования в производственных условиях горючей среды, источников зажигания и путей распространения пожара; разработку систем предотвращения возникновения пожара и противопожарной защиты. А также организационно – технических мероприятий по обеспечению пожарной безопасности.

Определяются аппараты, в которых содержится легковоспламеняющиеся и горючие жидкости, горючие газы и измельченные твердые горючие вещества и материалы. Устанавливаются, какие именно вещества, и в каком количестве участвуют в технологических процессах; при этом составляется полный перечень пожароопасных веществ и дается оценка их пожарной опасности. К пожароопасным относятся вещества и материалы, свойства которых каким – либо образом способствуют возникновению или развитию пожара. В связи с этим кроме горючих веществ, к ним должны быть отнесены азотная и другие кислоты, негашеная известь, перекись водорода, марганцовокислый калий.

Образование горючей среды внутри технологического оборудования при нормальной работе

Вещества и материалы, обращающиеся в технологических процессах производств, по агрегатному состоянию делятся на жидкие, газообразные и твердые . Каждая из этих групп веществ имеет свои особенности, которые влияют на условия образования горючей среды в аппа­ратах.

Аппараты с жидкостями. Впроизводственных усло­виях аппараты с жидкостями обычно не заполняются пол­ностью и, следовательно, над зеркалом жидкости имеется определенный свободный объем, который по­степенно насыщается парами жидкости.

При таких условиях количество паров в свободном пространстве может быть достаточным для образования в смеси с воздухом или другим окислителем горючей концентрации

Концентрационные пределы воспламенения для жид­костей приводятся в справочной литературе, а при не­обходимости могут быть определены экспериментально или расчетным путем.

Аппараты с газами . Их работа чаще связа­на с некоторым избыточным давлением, и обычно аппа­раты и трубопроводы при нормальной работе заполнены горючим газом (или смесью газов) без примеси окисли­теля. Горючая концентрация внутри таких аппаратов образоваться не может из-за отсутствия окислителя (ра­бочая концентрация в них С =100 % об.).

Рабочую концентрацию определяют по технологиче­скому регламенту исходя из соотношения компонентов, подаваемых в аппарат, или путем взятия проб смеси газов из аппарата и проведения газового анализа на соответствующих приборах.

Для предупреждения образования горючей концентрации в аппаратах с газами используются следующие технические решения: поддержание рабочей концентрации горючего газа в смеси с окислителем за концентрационными пределами воспламенения с помощью систем автоматики; при этом условие опасности преобразуется в условие без­опасности.

Аппараты с пылями. Многие технологические процес­сы (дробление, размол, разрыхление, сепарация; пнев­мотранспорт и т.п.) связаны с получением, переработ­кой или выделением в качестве побочного продукта пы­левидных материалов (пылей), которые представляют собой твердые вещества в состоянии тонкого измельче­ния. В зависимости от размеров частиц и скорости дви­жения воздуха пыль может находиться во взвешенном (аэрозоль) или осевшем (аэрогель) состояниях. Мини­мальную скорость движения воздушного потока (ско­рость витания), при которой твердая частичка данного размера начнет оседать, определяют расчетным путем. Взвешенная в воздухе пыль может образовывать взры­воопасную концентрацию. Концентрационные пределы воспламенения пылевоздушных смесей зависят от хими­ческого состава вещества, его измельченности (дисперс­ности), влажности и зольности.

Повышенную опасность для технологического оборудования представляет осевшая пыль , образующая в виде отложений на внутренних стенках аппаратов. Обладая развитой поверхностью контакта с окислителем (чаще воздухом), она в отложившемся состоянии может самовозгораться, а при взвихрении – образовывать горючую концентрацию . Это обстоятельство обуславливает характерную особенность циклического протекания пылевых взрывов. Сначала, как правило, происходит первичный взрыв (вспышка) небольшой мощности в локальной зоне технологического оборудования. Образующая при этом ударная волна приводит к взвихрению отложившейся пыли и образованию горючей пылевоздушной смеси в значительно большом объеме. Происходит повторный взрыв, который часто приводит к разрушению оборудования и к образованию горючей концентрации уже в объеме производственного цеха. Мощность последнего взрыва оказывается достаточной для разрушения всего здания, в котором размещается производство.

Осевшая пыль в машинах и аппаратах накапливается в застойных зонах. Накапливанию осевшей пыли способствуют увеличенная влажность среды, конденсация влаги на внутренних стенках аппаратов и трубопроводов, повышенная их шероховатость.

Для предупреждения образования горючей концентрации в аппаратах с пылями могут быть применены следующие технологические решения:

Применение менее «пылящих» технологических процессов

(вибрационного помола, измельчение с увлажнением);

Устройство систем местных отсосов от технологического оборудования;

Флегматизация негорючими (инертными) газами минеральными пылями

Предупреждение оседания пылей внутренних поверхностях аппаратов и

трубопроводов. Это достигается выбором оптимальной скорости

пневмотранспортирования пылевидных материалов.

Следует также показать, как будет изменяться концентрация паров внутри аппарата при понижении уровня жидкости (в период её расхода), когда в аппарат начнёт поступать свежий воздух через дыхательную трубу и разбавлять паровоздушную смесь.

Таблица 3.1

Оценка пожаровзрывоопасности среды внутри аппаратов

Наименование аппарата и вид жидкости

Наличие паровоздушного пространства

Рабочая температура, оС

Температурные пределы воспламенения

Заключение о горючести среды в аппарате

Кожухотрубчатый холодильник-конденсатор,

Пары стирола и водорода

Вакуум-компрессоры для удаления водорода, п. 7

Взрывоопасная концентрация не образуется

Отсутствует паровоздушное пространство

Линия отвода газа на вакуум-компрессор

Взрывоопасная концентрация не образуется

Промежуточная емкость стирола-сырца, п. 8

Взрывоопасная концентрация не образуется

Пожаровзрывоопасность аппаратов, при эксплуатации которых возможен выход горючих веществ наружу без повреждения их конструкции

Аппараты поз. 1, 6, 14 (содержащие этилбензол, стирол,), оборудованы дыхательными клапанами с огнепреградителями. Огнепреградители не могут препятствовать выход паров ЛВЖ наружу.

Вывод 1. Перед выбросом в атмосферу необходимо очищать от паров жидкостей, для этой цели его необходимо пропускать через конденсатор-холодильник.

При эксплуатации закрытых аппаратов п.п. 3, 4, 5, 6, 9, 10, 11 и емкостей, находящихся под давлением горючими газами и парами ЛВЖ без наличия воздуха, рабочая концентрация газа в аппарате будет равна 100 %. Следовательно, она практически всегда выше верхнего концентрационного предела воспламенения, т.е. опасность взрыва (взрывоопасная концентрация) отсутствует. Однако она может возникать в периоды пуска и остановки аппарата.

Пожарная опасность возникает только при нарушении установленного давления, повышении температурного режима, появлении неплотностей и повреждений, а также в периоды пуска и остановки технологического оборудования, т. е. когда внутрь аппаратов может попадать воздух или когда жидкости и их пары будут выходить наружу.

При эксплуатации закрытых аппаратов и емкостей, находящихся под давлением, даже при их исправном состоянии всегда происходят небольшие утечки горючих веществ через прокладки, швы, разъемные соединения и другие места. В данном технологическом процессе к таким аппаратам относится п.6 Кожухотрубчатый холодильник конденсатор. Это объясняется тем, что даже при самой тщательной обработке прилегающих друг к другу поверхностей нельзя создать абсолютную проницаемость. При соприкосновении двух поверхностей из-за незначительных выпуклостей образуется большое количество капиллярных каналов, по которым будет происходить истечение газов и жидкостей. Величина утечки будет зависеть главным образом от режима работы аппарата и состояния уплотнений. Подсчет таких потерь весьма затруднителен.

Для ориентировочного определения утечки паров и газов на работающих под давлением герметичных аппаратов можно воспользоваться формулой Н.Н. Репина:

== 1,25 кг/час

Где G-количество паров и газов, выходящих из аппарата кг/час;

К- коэффициент, учитывающий степень износа производственного оборудования, принимается в пределах от 1 до 2;

С= 0,174 - коэффициент, зависящий от давления паров или газов в аппарате (табл.2.5)

V –внутренний (свободный) объем аппарата, м3;

М- молекулярный вес газов или паров, находящихся под давлением в аппарате;

Температура паров или газов, находящихся под давлением, ° К

Утечки из нормально герметизированных аппаратов, работающих под давлением, происходят хотя и непрерывно, но обычно не вызывают реальной пожарной опасности, так как выходящие наружу маленькие струйки газа или пара чаще всего рассредоточены по поверхности аппарата и при наличии воздухообмена сразу же рассеиваются и отводятся от места их выделения.

Пожаровзрывоопасность аппаратов, при эксплуатации которых возможен выход горючих веществ наружу без повреждения их конструкции. К названным аппаратам относятся: аппараты с переменным уровнем жидкости («дышащие»); аппараты с открытой поверхностью испарения; аппараты периодически действующие, аппараты с сальниковыми уплотнениями. Следует определить, имеются ли такие аппараты в технологической схеме.

Аппараты с переменным уровнем жидкости (В рамках задания на КП по варианту 72 рассмотрим промежуточную емкость стирола п. 8.)

Прежде всего, нужно доказать, является ли выброс паровоздушной смеси через дыхательную трубу пожаровзрывоопасным. Концентрация паровоздушной смеси может быть взрывоопасной, если выполняется условие:

js ≥ jнп (6)

где js − концентрация насыщенного пара при рабочей температуре жид-кости, определяемая по формуле.



Загрузка...