novomarusino.ru

Огнетушащие вещества: классификация, особенности применения. Характеристика основных огнетушащих средств Виды огнетушащих средств

Теплофизическое объяснение процесса тушения пожара

Ликвидация горения с физической точки зрения - это воздействие на тепловыделение и теплоотдачу. С уменьшением тепловыделения или с уменьшением теплоотдачи снижается температура и скорость реакции. При введении в зону горения огнетушащих веществ температура может достигнуть значения, при котором горение прекращается. Минимальная температура горения , ниже которой скорость теплоотвода превышает скорость тепловыделения и горение прекращается, называется температурой потухания.

Температура потухания значительно выше температуры самовоспламенения , следовательно, для прекращения горения достаточно понизить температуру зоны реакции ниже температуры потухания, увеличивая интенсивность теплоотвода или уменьшая скорость тепловыделения. Так, если изменить концентрацию кислорода в воздухе, добавив к нему негорючий газ, то скорость выделения теплоты единицы площади поверхности зоны реакции будет уменьшаться и температура горения понизится. При определенной концентрации негорючего газа температура горения опустится ниже температуры потухания и горение прекратится (рис.1. ) .

Рис.1. Зависимость тепловыделения и теплоотвода от температуры.
1 - кривая тепловыделения: 1" ,1"" ,1""" – кривые тепловыделения при уменьшении его скорости; 2 – прямая теплоотвода; О – начало окисления: П – точка, соответствующая температуре потухания; Г – точка, соответствующая температуре горения; Тп – температура потухания; Тг – температура горения.

В связи с уменьшением концентрации кислорода в воздухе понижается кривая 1 . Если при горении тепловое равновесие установилось в точке Г (пересечение прямой теплоотвода 2 и кривой тепловыделения 1 ), то при уменьшении скорости тепловыделения и понижении кривой 1 эта точка сместится влево и понизится температура горения. При некоторой скорости тепловыделения прямая теплоотвода 2 в области высоких температур только коснется кривой тепловыделения 1 в точке П . При дальнейшем снижении скорости выделения теплоты прямая теплоотвода расположится выше кривой скорости тепловыделения, и процесс горения перейдет в область окисления (точка О). Следовательно, температура горения Тп является критической , т.е. температурой потухания. Таким образом снизить температуру горения и прекратить горение можно как увеличением скорости теплоотвода, так и уменьшением скорости тепловыделения .

Этого можно достигнуть:


Рис.2. Схема прекращения горения

Способы прекращения горения

Способы прекращения горения представлены на рис.3 .

Каждый из способов прекращения горения можно выполнить различными приемами или их сочетанием. Например, создание изолирующего слоя на горящей поверхности легковоспламеняющейся жидкости может быть достигнуто подачей пены через слой горючего, с помощью пеноподъемников , навесными струями и т.п. .


Рис.3. Классификация способов прекращения горения.

Классификация огнетушащих веществ

На основании указанных способов прекращения горения, можно классифицировать огнетушащие вещества следующим образом:

Вещества и материалы, на которые нельзя подавать воду и ее растворы

Вещество, материал Степень опасности
Азид свинца Взрывается при увеличении влажности до 30%
Алюминий, магний, цинк, цинковая пыль При горении разлагают воду на кислород и водород
Битум Подача компактных струй воды ведет к выбросу и усилению горения
Гидриды щелочных и щелочноземельных металлов
Гидросульфит натрия Самовозгорается и взрывается от действия воды
Гремучая ртуть Взрывается от удара компактной водяной струи
Железо кремнистое (ферросилиций) Выделяется фосфористый водород, самовоспламеняющийся на воздухе
Калий, кальций, натрий, рубидий, цезий металлические Реагируют с водой с выделением водорода, возможен взрыв
Кальций и натрий (фосфористые) Реагируют с водой с выделением фосфористого водорода, самовоспламеняющегося на воздухе
Калий и натрий (перекиси) При попадании воды возможен взрывообразный выброс с усилением горения
Карбиды алюминия, бария и кальция Разлагаются с выделением горючих гaзов, возможен взрыв
Карбиды щелочных металлов При контакте с водой взрываются
Магний и его сплавы При горении разлагают воду на водород и кислород
Метафос С водой реагирует с образованием взрывоопасного вещества
Натрий сернистый и гидросернокислый Сильно разогревается (свыше 400 °С), может вызвать возгорание горючих веществ, а также ожог при попадании на кожу, сопровождающийся труднозаживающими язвами

Под огнетушащими веществами, как правило, подразумеваются такие вещества, которые непосредственно используются в процессе пожарной защиты. Перед их использованием следует ознакомиться с областью их применения. Например, вода категорически не подойдет для тушения пожаров, вызванных проблемами в электрических коммуникациях.

Чаще всего в ликвидации пожаров используется вода, порошки, пена, аэрозоли и газовые составы. Рассмотрим каждое вещество отдельно.

Виды огнетушащих веществ

Вода

Самое доступное и часто встречающееся вещество. Это связано с ее низкой стоимостью, теплоемкостью. В чистом виде применяется довольно редко, как правило, на основе воды делают растворы с определенными свойствами. Например, снижается коэффициент поверхностного натяжения. Это зависит непосредственно от цели такого раствора.

Вода имеет небольшую теплопроводность. Поэтому ее неэффективно применять при воспламенении горючих жидкостей. Вода может разбрызгать горючее вещество. Наиболее эффективной является тонкораспыленная вода.

Пена

Довольно эффективное и распространенное вещество в сфере пожарной безопасности. Одновременно оказывается охлаждающий и изолирующий эффект. Такие свойства пены помогают избежать повторного воспламенения, после того как она разрушилась. Не вся пена используется для борьбы с пожарами. Например, использование мыльной пены будет нелогичным. Пожарная пена должна иметь высокую структурную и механическую прочность. Пена довольно плохо храниться, поэтому, как правило, в такие растворы добавляются соли, которые улучшают огнетушащие свойства и улучшают хранение. Бывает нескольких видов.

  1. Химическая. Состоит из щелочи и кислоты. Также в этот состав добавляют стабилизаторы для более длительного хранения.
  2. Воздушно-механическая. Изготавливается из пенного раствора при смешивании с водой.
  3. Протеиновая. Изготавливается из растительных и животных отходов с высоким содержанием белка. Такая пена имеет низкую совместимость с огнетушащими порошками.

Существует огромное количество других видов, однако, мы не будем останавливаться на их детальном рассмотрении. Коротко можно сказать о положительных сторонах применения пены. Пена обладает хорошим охлаждающим эффектом. Пена показывает высокую эффективность в борьбе при пожарах с воспламеняющимися жидкостями. Хорошо покрывает горящую площадь и значительно снижает шанс повторного возгорания.

Порошки

Одним из наиболее универсальных веществ, применяющихся в пожарной безопасности, являются особые порошковые составы. Собственно такие составы состоят из минеральных видов солей. Они обрабатываются особыми добавками. Это придает им дополнительной текучести и снижает способность поглощать воду. Что касается действующих веществ, то порошки составляют из карбонатных и других соединений.

Порошковые составы имеют разные сферы применения. Например, порошки общего применения используются для тушения горючих жидких веществ, некоторых газов и также электрического оборудования. Итак, какие существуют виды порошковых составов?

  1. АВСЕ-разновидность порошков. Основ действующий элемент таких порошков - фосфорно-аммонийная соль. Такие составы подойдут для борьбы с пожаром жидких горючих веществ. Отлично подойдут для тушения твердых веществ и электрооборудования;
  2. ВЕ-тип. Главный действующий компонент - сульфат калия, также бикарбонат натрия и другие. Такой состав подойдет для тушения объектов под напряжением. Хорошо справляются с воспламенением твердых и жидких горючих веществ;
  3. D-тип. Подходят для тушения металлов.

Аэрозоли

В наше время применяются довольно широко. Такие составы имеют высокую эффективность. Хорошо сохраняются и сберегают нужную концентрацию для тушения пожаров. Такие составы не требуют каких-либо особых условий для хранения.

Несмотря на все преимущества, все-таки аэрозоли имеют некоторые недостатки. Дело в том, что при ложном срабатывании они сами могут стать источником огня. Правильная конструкция снижает такую опасность.

Газовые составы

Считаются наиболее эффективными веществами в сфере пожарной безопасности. В таком составе, как правило, находится диоксид углерода и хладона. Это инертный газ, который не воспламеняется. Таким образом, при его применении, он понижает процент кислорода и тем самым уменьшает пламя. Явным преимуществом является то, что такой газ не загрязняет поверхность (в отличие от порошков). Газовые составы наиболее эффективны в условиях закрытого помещения.

Углекислый газ эффективен для борьбы с пожарами, вызванными воспламенением жира и масла. Широко применяется при пожарах, связанных с электронным оборудованием. Показывает хорошие результаты против горящей пластмассы. Отлично подойдет для ликвидации пожара в помещении, где уборка затруднительна.

Совет! Важно отметить, что в огнетушителях должны использоваться такие вещества, которые имеют соответствующие сертификаты и заключения.

Другие виды огнетушащих веществ

Огнетушащие вещества могут быть:

  • Охлаждающими, такими как вода.
  • Разбавляющими. К этой группе относится углекислый газ, азот и тонкораспыленная вода.
  • Порошкообразными.
  • Изолирующими. Сюда относятся такие вещества как песок, одежда, воздушно-механическая пена.

Под огнетушащими веществами в пожарной тактике понимаются такие вещества, которые непосредственно воздействуют на процесс горения и создают условия для его прекращения (вода, пена, порошки и др.).

По основному (доминирующему) признаку прекращения горения тушащие вещества подразделяются на:
охлаждающего действия (вода, твердый диоксид углерода и др.);
разбавляющего действия (негорючие газы, водяной пар, тонкораспыленная вода и т.п.);
изолирующего действия (воздушно-механическая пена различной кратности, сыпучие негорючие материалы и пр.);
ингибирующего действия (галоидированные углеводороды: бромистый метилен, бромистый этил, тетрафтордибромэтан, огнетушащие составы на их основе и др.).

Однако следует отметить, что все огнетушащие вещества, поступая в зону горения, прекращают горение комплексно, а не избирательно, т.е. вода, являясь огнетушащим веществом охлаждения, попадая на поверхность горящего материала, частично будет действовать как вещество разбавляющего и изолирующего действия.

Охлаждающие огнетушащие вещества. Для охлаждения горящих материалов применяются жидкости, обладающие теплоемкостью. Для большинства горючих материалов применяется вода.

Попадая в зону горения, вода отнимает от горящих материалов и продуктов горения большое количество тепла. При этом она частично испаряется и превращается в пар, увеличиваясь в объеме в 1700 раз (из 1 л воды при испарении образуется 1700 л пара), благодаря чему происходит разбавление реагирующих веществ, что само по себе способствует прекращению горения, а также вытеснению воздуха из зоны пожара.

Вода обладает высокой термической стойкостью. Ее пары только при температуре свыше 1700 °С могут разлагаться на кислород и водород, усложняя тем самым обстановку в зоне горения. Большинство же горючих материалов горит при температуре, не превышающей 1300 – 1500 °С и тушение их водой не опасно. Однако металлические магний, цинк, алюминий, титан и его сплавы, при горении создают в зоне горения температуру, превышающую термическую стойкость воды. Тушение их водой недопустимо.

Вода имеет низкую теплопроводность, что способствует созданию на поверхности горящего материала надежной тепловой изоляции. Это свойство в сочетании с предыдущими позволяет использовать ее не только для тушения, но и для защиты материалов от воспламенения.

Малая вязкость и несжимаемость воды позволяет подавать ее по рукавам на значительные расстояния и под большим давлением.

Пары воды способны растворять некоторые горючие пары, газы и поглощать аэрозоли. Распыленной водой можно осаждать продукты горения на пожарах в зданиях. Для этих целей применяют распыленные и тонкораспыленные струи.

Некоторые горючие жидкости (жидкие спирты, альдегиды, органические кислоты и др.) растворимы в воде, поэтому, смешиваясь с водой, они образуют негорючие или менее горючие растворы.

Наряду с этим у воды имеются и отрицательные свойства. Основной недостаток у воды как огнетушащего вещества заключается в том, что из-за высокого поверхностного натяжения (72,8 10-3 Дж/м2) она плохо смачивает твердые материалы и особенно волокнистые вещества.

Для устранения этого недостатка к воде добавляют поверхностно-активные вещества (ПАВ), или, как их еще называют - смачиватели. На практике используют растворы ПАВ, поверхностное натяжение которых в 2 раза меньше, чем у воды.

Применение растворов смачиваетелей позволяет уменьшить расход воды при тушении пожаров на 35-50%; снизить время тушения на 20-30%, что обеспечивает тушение одним и тем же объемом огнетушащего вещества на большой площади.

Изолирующие огнетушащие вещества. Создание между зоной горения и горючим материалом или воздухом изолирующего слоя из огнетушащих веществ и материалов - распространенный способ тушения пожаров, применяемый пожарными подразделениями. При его реализации применяются самые разнообразные огнетушащие средства, способные на некоторое время изолировать доступ в зону горения либо кислорода воздуха, либо горючих паров и газов.

В практике пожаротушения для этих целей широкое применение нашли:
жидкие огнетушащие вещества (пена, в некоторых случаях вода и пр.);
газообразные огнетушащие вещества (продукты взрыва и т.д.);
негорючие сыпучие материалы (песок, тальк, флюсы, огнетушащие порошки и т.д.);
твердые тканевые материалы (асбестовые, войлочные покрывала и другие негорючие ткани, в некоторых случаях листовое железо).

Разбавляющие огнетушащие вещества. Для прекращения горения разбавлением реагирующих веществ, применяются такие огнетушащие средства, которые способны разбавить либо горючие пары и газы до негорючих концентраций, либо снизить содержание кислорода воздуха до концентрации, не поддерживающей горения.

Приемы прекращения горения заключаются в том, что огнетушащие средства подаются либо в зону горения или в горящее вещество, либо в воздух, поступающий в зоне горения.

Наибольшее распространение они нашли в стационарных установках пожаротушения для относительно замкнутых помещений (трюмы судов, сушильные камеры на промпредприятиях и т.д.), а также для тушения горючих жидкостей, пролитых на земле на небольшой площади. Кроме того, разбавление спиртов до 70 % водой - необходимое условие для успешного тушения их в резервуарах воздушно-механической пеной.

Практика показывает, что в качестве разбавляющих огнетушащих средств наибольшее распространение нашли диоксид углерода (углекислый газ), азот, водяной пар и распыленная вода. В гарнизонах, имеющих на вооружении автомобили газоводяного тушения (АГВТ), для целей разбавления концентрации кислорода воздуха, поступающего к зоне горения, возможной использование газоводяной смеси.

При определенной концентрации разбавляющих огнетушащих веществ в воздухе помещения температура горения снижается и становится меньше, чем температура потухания, горение прекращается.

Практика и опыт тушения пожаров показывают, что пламенное горение большинства горючих материалов прекращается при снижении концентрации кислорода в воздухе помещения до 14 – 16 %.

Углекислый газ применяется для тушения пожаров электрооборудования электроустановок, в библиотеках, книгохранилищах и архивах и т.п. Однако им категорически запрещено тушение щелочных и щелочноземельных металлов.

Азот, главным образом, применяется в стационарных установках пожаротушения для тушения натрия, калия, бериллия и кальция. Для тушения магния, лития, алюминия, циркония применяют аргон, а не азот. Диоксид углерода и азот хорошо тушат вещества, горящие пламенем (жидкости и газы), плохо тушат вещества и материалы, способные тлеть (древесина, бумага).

К недостаткам диоксида углерода и азота как огнетушащих веществ следует отнести их высокие огнетушащие концентрации и отсутствие охлаждающего эффекта при тушении.

Водяной пар нашел широкое применение в стационарных установках тушения в помещениях с ограниченным количеством проемов, объемом до 500 м3 (сушильные и окрасочные камеры, трюмы судов, насосные по перекачке нефтепродуктов и т.п.), на технологических установках для наружного пожаротушения, на объектах химической и нефтеперерабатывающей промышленности.

Тонкораспыленная вода (диаметр капель меньше 100 мк) - для получения ее применяют насосы. Создающие давление свыше 2 - 3 МПа (20 - 30 атм) и специальные стволы-распылители.

Попадая в зону горения, тонкораспыленная вода интенсивно испаряется, снижая концентрацию кислорода и разбавляя горючие пары и газы, участвующие в горении. Об эффективности применения тонкораспыленной воды для целей пожаротушения свидетельствуют опыты, проведенные на морских судах, где установлено, что после четырехминутной работы одного ствола высокого давления температура в помещениях кают снижалась с 700 до 100°С, содержание аэрозоля в дыму уменьшалось в 3 раза, увеличивалась освещенность предметов источником света, резко снижалось содержание оксида углерода за счет поглощения водой.

Огнетушащие вещества химического торможения. Сущность прекращения горения химическим торможением реакции горения заключается в том, что в воздух горящего помещения или непосредственно в зону горения вводятся такие огнетушащие вещества, которые вступают во взаимодействие с активными центрами реакции окисления, образуя с ними либо негорючие, либо менее активные соединения, обрывая тем самым цепную реакцию горения. Поскольку эти вещества оказывают воздействие непосредственно на зону реакции, в которой реагирующие вещества находятся в паровоздушной фазе, они должны отвечать следующим специфическим требованиям:
иметь низкую температуру кипения, чтобы при малых температурах разлагаться, легко переходить в парообразное состояние;
иметь низкую термическую стойкость, т.е. при малых температурах разлагаться на составляющие их атомы и радикалы;
продукты термического распада огнетушащих веществ должны активно вступать в реакцию с активными центрами.

Этим требованиям отвечают галоидированные углеводороды - особо активные вещества, оказывающие ингибирующее действие, т.е. тормозящие химическую реакцию горения. Однако в отношении этих веществ следует напомнить общие требования к огнетушащим веществам и особенно на такое, как токсичность. Наиболее широкое применение нашли составы на основе брома и фтора. Галоидированные углеводороды и огнетушащие составы на их основе имеют высокую огнетушащую способность при сравнительно небольших расходах.

Огнетушащее вещество, при попадании в очаг пожара которого снижается скорость горения или горение полностью прекращается. Есть: газообразные (водяной пар), жидкие (вода, пена), твердые (песок, земля, порошки), асбестовые или брезентовые покрывала.

По принципу действия разделяют:

    охлаждающие (вода) – лучше горячей, тем быстрее испарение

    изолирующие (порошок, пена, покрывала) – изолирование зоны горения от доступа кислорода

    разбавление горючих жидкостей или уменьшение содержания кислорода (пар, вода, углекислый газ)

    замедление горения (порошки)

На каждом предприятии должны быть первичные средства пожаротушения: песок, вода, покрывала, огнетушители, топоры и др.

Вода наиболее распространенное средство тушения пожаров. Попадая в зону горения, вода нагревается и испаряется, поглощая большое кол-во теплоты. При испарении воды образуется пар, который затрудняет доступ воздуха к очагу горения. Водой нельзя тушить горение таких в-в и материалов, как щелочные металлы, карбид кальция, алюминиевая пудра и др., при взаимодействии которых с водой выделяется большое кол-во теплоты, горючие газы и др. Вода – хороший проводник электрического тока, поэтому применение ее для тушения пожаров в электроустановках, находящихся под напряжением, может привести к поражению электротоком. Воду в виде компактных струй нельзя применять для тушения пожаров легковоспламеняющихся жидкостей. Водой нельзя гасить лаки, бензин (т.к. они легче), электрооборудование под напряжением (вода хороший проводник), нельзя применять к гашению ценных вещей.

Преимущества воды: доступность, низкая стоимость, большая теплоемкость, химическая нейтральность.

Недостатки воды : невысокая смачиваемость, поэтому добавляют поверхностно-активные вещества – мыло, порошки.

Водные растворы солей относятся к числу жидких огнегасящих средств. Применяются растворы бикарбоната натрия, хлоридов кальция и аммония и др. Соли, выпадая из водного раствора, образуют на поверхности горящего в-ва изолирующие пленки, отнимающие теплоты. При разложении солей выделяются негорючие газы.

Пена – для тушения всех твердых горючих веществ, для которых применимо и тушение водой. Способы получения пены:

    химический – соединение щелочи и кислоты, нельзя этим гасить электрооборудование

    воздушно-механический – пеногенераторы: смешивание специальных порошков с водой и рассеивание струи на специальных сетках.

Она закрывает доступ кислорода. Применяется и для гашения горючих жидкостей.

Химическая пена получается при взаимодействии щелочного и кислотного растворов в присутствии пенообразователей. При этом образуется газ. Пузырьки газа обволакиваются водой с пенообразователем, в результате создается устойчивая пена, которая может долго оставаться на поверхности жидкости. В-ва, которые необходимы для получения диоксида углерода, применяются или в виде водных растворов, или сухих пенопорошков. Применение химической пены в практике сокращается, ее все больше вытесняет воздушно-механическая пена.

Воздушно-механическая пена – смесь воздуха-90%, воды- 9,7 и пенообразователя- 0,3%. Характеристикой пены является кратность- отношение объема полученной пены к объему исходных в-в. Пену обычной кратности (20%) получают с помощью воздушно-пенных стволов. Вода под давлением, предварительно смешанная с пенообразователем, поступает в специальное устройство, обеспечивающее подсос воздуха. За последнее время в практике тушения пожаров находит применение высокократная (200) пена, значительно более объемная и дольше сохраняющаяся. Она получается в специальных генераторах, где воздух не подсасывается, а нагнетается под некоторым давлением.

Водяной пар применяют для тушения пожаров в помещениях объемов до 500м 3 и небольших пожаров на открытых площадках и установках. Пар увлажняет горящие предметы и снижает концентрацию кислорода. Огнегасящая концентрация водяного пара в воздухе составляет примерно 35% по объему.

Тушение углекислотой – осуществляется путем выпуска углекислоты из емкости с большим давлением.

Огнетушащие порошки – мелкоизмельченные минеральные соли с различными добавками, препятствующими их слеживанию и комкованию. Они обладают хорошей огнетушащей способностью, в несколько раз превышающей способность таких ингибиторов горения, как галоидоуглеводороды, а также универсальностью применения так как подавляют горение материалов, которые нельзя потушить водой и др. средствами.

В замкнутых пространствах для тушения используют и инертные газы . В качестве реакторов инертных газов – струя с реактивного двигателя.

Огнетушитель – переносное или передвижное устройство для тушения пожаров, после приведения его в действие выпускается струя огнегасящего вещества. Огнетушители бывают массой от 2 кг до 100 кг.

Огнегасящее вещество : химическая или воздушно-химическая пена, диоксид углерода в сжиженном состоянии, порошки.

Виды:

    жидкостный (вода или вода с добавками);

    химический пенный (кислота и щелочь) – при приведении его в действие химическая реакция нейтрализации

    углекислотный – устройство многоразового действия, заполняется сжиженной кислотой. Длина струи – 2-3 м, длительность – 30-40 сек.

    порошковые – баллон заполнен порошком, внутри еще 1 баллон – воздух. Длительность действия – 30 сек.

Принципы приведения их в действие: на каждом огнетушителе есть своя инструкция.

Успешное тушение пожаров зависит от быстрого обнаружения их и своевременно принятых мер по ликвидации очага возгорания.

  • 5.4. Линейная скорость распространения горения
  • 5.5. Воздействие офп на человека и их допустимые значения
  • 6. Прекращение (ликвидация) горения.
  • 6.1. Условия прекращения горения
  • 6.2. Способы прекращения горения
  • 6.3. Огнетушащие средства – виды, классификация.
  • 6.4. Огнетушащие вещества и материалы
  • 7. Параметры тушения пожара
  • 7.1. Интенсивность подачи огнетушащих средств
  • 7.2. Расходы огнетушащих средств на пожаротушение
  • 7.2.1. Расход огнетушащего средства
  • 7.2.2. Расход воды из пожарных стволов
  • 7.2.3. Нормативные расходы воды, установленные «Техническим регламентом о требованиях пожарной безопасности»
  • 7.3. Время (периоды) тушения пожара
  • 7.4. Площадь тушения (тушение по площади)
  • 7.5. Тушение по объёму (объёмное тушение)
  • 9. Тактико-технические данные пожарной техники.
  • 9.1. Классификация пожарной техники и главные параметры пожарных автомобилей.
  • Структурная схема обозначений пожарных автомобилей:
  • 9.2. Тактико-техническая характеристика пожарных насосов
  • 9.3. Основные пожарные автомобили
  • 9.4. Тактико-технические характеристики основных пожарных автомобилей общего применения
  • 9.4.1. Пожарные автоцистерны.
  • 9.4.2. Пожарные автоцистерны с лестницей (ацл), пожарные автоцистерны с коленчатым подъемником, пожарно-спасательные автомобили.
  • 9.4.3. Пожарных автомобилей первой помощи (апп)
  • 9.4.4. Пожарные насосно-рукавные автомобили.
  • 9.5. Тактико-технические характеристики основных пожарных автомобилей целевого применения
  • 9.5.1. Пожарные автомобили порошкового тушения (ап).
  • 9.5.2. Пожарные автомобили пенного тушения.
  • 9.5.3. Пожарные автомобили комбинированного тушения.
  • 9.5.4. Пожарные автомобили газового тушения.
  • 9.5.5. Пожарные автомобили газоводяного тушения.
  • 9.5.6. Пожарные автонасосные станции.
  • 9.5.7. Пожарные пеноподъёмники.
  • 9.5.8. Пожарные аэродромные автомобили.
  • 9.6. Тактико-технические характеристики специальных пожарных автомобилей
  • 9.6.1. Пожарные автолестницы
  • 9.6.2. Пожарные коленчатые автоподъёмники
  • 9.6.3. Пожарный аварийно – спасательный автомобиль
  • 9.6.4. Пожарные автомобили газодымозащитной службы
  • 9.6.5. Пожарные автомобили связи и освещения
  • 9.6.6. Пожарные рукавные автомобили
  • 9.6.7. Пожарный водозащитный автомобиль
  • 9.6.8. Пожарный автомобиль дымоудаления
  • 9.6.9. Пожарный штабной автомобиль
  • 9.6.10. Автомобиль отогрева пожарной техники
  • 9.6.11. Пожарная компрессорная станция
  • 9.6.12. Другие типы специальных пожарный автомобилей
  • 9.7. Переносные и прицепные пожарные мотопомпы
  • 9.8. Сизод и воздушные компрессоры
  • 9.8.1. Аппараты дыхательные со сжатым воздухом
  • 9.8.2. Аппараты дыхательные со сжатым кислородом
  • 9.8.3. Компрессорные установки
  • 9.9. Стволы (водяные, пенные, лафетные, генераторы)
  • 9.9.1. Стволы ручные
  • 9.9.2. Стволы лафетные
  • 9.9.3. Стволы лафетные с дистанционным управлением и роботизированные
  • Технические характеристики пожарных роботов на базе лафетных стволов
  • Технические характеристики пожарных роботов на базе лафетных стволов
  • 9.10. Рукава (напорные, всасывающие)
  • 9.11. Ручные пожарные лестницы.
  • 9.12. Средства связи
  • 9.13. Специальная защитная одежда
  • 9.14. Высокотехнологичные средства тушения и робототехнические комплексы
  • Мобильный робототехнический комплекс разведки и пожаротушения
  • 10. Основы расчёта сил и средств для тушения пожаров.
  • 10.1. Проведение расчета сил и средств для тушения пожара
  • 10.2. Расчёты по забору и подаче воды из противопожарных резервуаров и водоёмов
  • 10.2.1. Расчёт гидроэлеваторных систем.
  • 10.3. Определение напоров на насосе при подаче воды и раствора пенообразователя на тушение
  • 10.4. Проведение расчётов по подаче воды к месту пожара
  • 10.4.1. Подача воды в перекачку
  • 10.4.2. Подвоз воды автоцистернами
  • 10.5. Особенности тушения пожаров на различных объектах
  • 10.5.1. Подача воды на тушение в зданияхповышенной этажности
  • 10.5.2. Тушение в зданияхповышенной этажности с использованием универсальных стволов.
  • 10.5.3.Тушение пожаров нефти и нефтепродуктов в резервуарах
  • 10.5.3.Тушение пожаров на открытых технологических установках
  • 11. Этапы боевого развёртывания.
  • 12. Нормативы по пожарно-строевой подготовке (извлечения).
  • 13. Сигналы управления
  • 6.4. Огнетушащие вещества и материалы

    К огнетушащим относятся вещества и материалы, с помощью которых прекращается горение.

    Огнетушащие вещества оказывают комбинированное воздействие на процесс горения вещества. Вода, например, может охлаждать и изолировать (или разбавлять) источник горения; пенные средства действуют изолирующее и охлаждающе; огнетушащие порошковые составы (ОПС) изолируют и тормозят реакцию горения; наиболее эффективные газовые вещества действуют одновременно как разбавители и как тормозящие реакцию горения.

    Все огнетушащие вещества в зависимости от принципа прекращения горения разделяются на виды:

      охлаждающие зону реакции или горящие вещества (вода, водные растворы солей, твердый диоксид углерода и др.);

      разбавляющие вещества в зоне реакции горения (инертные газы, водяной пар, тонкораспыленная вода, газоводяные смеси, продукты взрыва и др.);

      изолирующие вещества от зоны горения (химическая и воздушно-механическая пены, огнетушащие порошки, негорючие сыпучие вещества, листовые материалы и др.);

      химически тормозящие реакцию горения (составы 3.5; хладоны 114В, 13В1 и др.).

    Однако, любое огнетушащее вещество обладает каким-либо одним доминирующим свойством.

    Таблица 36

    Класс пожара

    Характеристика класса

    Подкласс пожара

    Характеристика подкласса

    Горение твердых веществ

    Горение твердых веществ, сопровождаемое тлением (например, древесина, бумага, уголь, текстиль)

    Вода со смачивателями, хладоны, порошки для тушения пожаров АВСЕ классов

    Горение твердых веществ, не сопровождаемое тлением (каучук, пластмассы)

    Все виды огнетушащих веществ

    Горение жидких веществ

    Горение жидких веществ, нерастворимых в воде (бензин, нефтепродукты), а также сжижаемых твердых веществ (парафин)

    Пена, мелкораспыленная вода, хладоны, порошки типа для тушения пожаров АВСЕ и ВСЕ классов

    Горение полярных жидких веществ, растворимых в воде (спирты, ацетон, глицерин и др.)

    Пена на основе специальных пенообразователей, мелкораспыленная вода, хладоны, порошки для тушения пожаров АВСЕ и ВСЕ классов

    Горение газообразных веществ

    Бытовой газ, пропан, водород, аммиак и др.

    Объемное тушение и флегматизация газовыми составами, порошки для тушения пожаров АВСЕ и ВСЕ классов, вода для охлаждения оборудования

    Горение металлов

    Горение легких металлов и их сплавов (алюминий, магний и др.), кроме щелочных

    Специальные порошки

    Горение щелочных металлов (натрий, калий и др.)

    Специальные порошки

    Горение металлосодержащих соединений (металлорганические соединения, гидриды металлов)

    Специальные порошки

    Вода – основное огнетушащее вещество охлаждения, наиболее доступное и универсальное. Хорошее охлаждающее свойство воды обусловлено ее высокой теплоемкостью при нормальных условиях. При попадании на горящее вещество, вода частично испаряется и превращается в пар, а высокая теплота парообразования воды (2236 кДж/кг) позволяет отнимать большое количество тепла в процессе тушения пожара. Низкая теплопроводность способствует созданию на поверхности горящего материала надежной тепловой изоляции. Вода доступна для целей пожаротушения, экономически целесообразна, инертна по отношению к большинству веществ и материалов, имеет не значительную вязкость и несжимаемость. При тушении пожаров воду используют в виде компактных, распыленных и тонкораспыленных струй.Сплошные струи используют при тушении наружных и открытых внутренних пожаров, когда необходимо подать большое количество воды на значительное расстояние. Наибольший огнетушащий эффект достигается при подаче воды в распыленном состоянии, так как увеличивается площадь одновременного равномерного охлаждения, вода быстро нагревается и превращается в пар, отнимая большое количество теплоты.В зависимости от вида горящих материалов используют распыленную воду различной степени дисперсности.

    Вода почти со всеми твердыми горючими веществами не вступает в реакцию, за исключением щелочных и щёлочно-земельных металлов (калия, натрия, кальция, магния и др.) и некоторых других веществ.

    С некоторыми веществами и материалами вода с добавками ПАВ или без них вступает в реакцию с выделением: водорода, кислорода, фосфористого водорода; ведет к самовозгоранию; а также взрыву; выбросу исходного вещества. Такие вещества нельзя тушить водой, в том числе с добавлением к ней смачивателя (см. таблицу 37).

    Таблица 37

    Вещества и материалы, при тушении которых опасно применять воду и другие огнетушащие средства на ее основе

    Азид свинца

    Взрывается при увеличении влажности до 30 %

    Алюминий, алюминийорганические соединения, щелочные металлы, магний, цинк, цинковая пыль

    При горении разлагают воду на кислород и водород. Реагируют со взрывом

    Подача компактных струй воды ведет к выбросу и усилению горения, вскипание, выброс

    Гидриды щелочных и щелочноземельных металлов

    Гидросульфит натрия

    Самовозгорается и взрывается от действия воды

    Гремучая ртуть

    Взрывается от удара водяной струи

    Железо кремнистое (ферросилиций)

    Выделяется фосфористый водород, самовоспламеняющийся на воздухе

    Жиры, масла, петролатум

    Усиление горения, разбрызгивание, вскипание, выброс

    Калий, кальций, натрий, рубидий, цезий металлические

    Реагируют с водой с выделением водорода, возможен взрыв

    Кальций и натрий (фосфористые)

    Реагируют с водой с выделением фосфористого водорода, самовоспламеняющегося на воздухе

    Калий и натрий (перекиси)

    При попадании воды возможен взрызообразный выброс с усилением горения

    Карбиды алюминия, бария и кальция

    Разлагаются с выделением горючих гaзов, возможен взрыв

    Карбиды щелочных металлов

    При контакте с водой взрываются

    Литийорганические соединения

    Разложение с выделением горючих газов

    Магний и его сплавы

    При горении разлагают воду на водород и кислород

    С водой реагирует с образованием взрывоопасного вещества

    Натрий сернистый в гидросернокислый

    Сильно разогревается (свыше 400 °С), может вызвать возгорание горючих веществ, а также ожог при попадании на кожу, сопровождающийся труднозаживающими язвами

    Негашеная известь

    Реагирует с водой с выделением большого количества тепла

    Нитроглицерин

    Взрывается от удара струи воды

    Подача струи воды в расплав ведет к сильному взрывообразному выбросу и усилению горения

    Серная кислота

    Серный ангидрид

    При попадании воды возможен взрывообразный выброс, Сильный экзотермический эффект

    Сесквидхлорид

    Взаимодействует с водой с образованием взрыва

    Реагируют с водой с выделением водородистого кремния, самовоспламеняющегося на воздухе, при попадании воды возможен взрывообразный выброс

    Термит, титан и его сплавы, титан четыреххлористый, электрон

    Реагируют с водой с выделением большого количества теплоты, разлагают воду на кислород и водород

    Триэтилалюминий и хлорсульфоновая кислота

    Реагируют с водой с образованием взрыва.

    Фосфорид алюминия

    Разлагается от воды и самовоспламеняется

    Взаимодействует с водой, выделяя хлористый водород

    Цианамид калия

    При увлажнении выделяется ядовитый цианистый водород

    Огнетушащие средства, допустимые к применению при тушении пожаров различных веществ и материалов приведены в таблице 38.

    Таблица 38

    Огнетушащие средства, допустимые к применению при тушении пожаров различных веществ и материалов

    Горючее вещество и материал

    Огнетушащие средства, допустимые к применению

    Азотная кислота

    Вода, известь, ингибиторы

    Азотнокислый калий и натрий

    Вода, ингибиторы

    Алюминиевая пудра (порошок)

    ОПС, инертные газы, ингибиторы, сухой песок, асбест

    Водяной пар

    Амилацетат

    Пены, ОПС, инертные газы, ингибиторы, песок

    Аммоний азотнокислый и марганцевокислый

    Вода, ингибиторы

    Пены, ОПС, ингибиторы, инертные газы, песок

    Вода в любом агрегатном состоянии, пены

    Ацетилен Ацетон

    Водяной пар

    Химическая пена, воздушно-механическая пена на основе пенообразователей общего применения, ингибиторы, инертные газы, водяной пар

    Пены, ингибиторы, инертные газы

    Бромацетилен

    Раствор едкой щелочи

    Инертные газы

    Волокна (вискозное и лавсан)

    Пены, ОПС, распыленная вода, песок

    Водород перекись

    Водяной пар, инертные газы

    Древесина

    Вода в любом агрегатном состоянии, пены, ОПС

    Калий металлический

    Пригодны любые огнетушащие средства

    ОПС, ингибиторы, сухой песок

    Карбид кальция

    Вода, ОПС, песок

    ОПС, сухой песок, ингибиторы

    Клей резиновый

    Вода, водные растворы смачивателей,

    Коллодий

    ОПС, пены

    Распыленная вода, пены, ОПС, инертные газы, ингибиторы

    Пены, ОПС, песок

    Минеральные токсичные удобрения:

    ОПС, сухой графит, кальцинированная сода

    аммиачная, кальциевая, натриевая селитры

    Водяной пар, инертные газы

    Натрий металлический

    Вода, ОПС

    Нафталин

    ОПС, ингибиторы, сухой песок, кальцинированная сода

    Нефть и нефтепродукты:

    Распыленная вода, пены, ОПС, инертные газы

    бензин, керосин, мазуты, масла, дизельное топливо и др., олифа, растительные масла

    Вода в любых агрегатных состояниях, ОПС, пены, песок, инертные газы

    Пластмассы

    Резина и резинотехнические изделия

    Вода, водные растворы смачивателей, ОПС, пены

    Сено, солома

    Вода, пены, ОПС, мокрый песок

    Сероводород

    Водяной пар, инертные газы, ингибиторы

    Сероуглерод

    Вода в любом агрегатном состоянии, пены, водяной пар, ОПС

    Скипидар

    Пены, ОПС, тонкораспыленная вода

    Спирт этиловый

    Химическая пена, воздушно-механическая пена средней кратности на основе пенообразователей общего применения с предварительным разбавлением спирта до 70 %, воздушно-механическая иена средней кратности на основе других пенообразователей с предварительным разбавлением спирта до 50 %, ОПС, ингибиторы, обычная вода с разбавлением спирта до негорючей концентрации 28 %

    Вода в любом агрегатном состоянии

    Вода, ОПС, песок

    Пригодны любые огнетушащие средства

    Уголь каменный

    Вода в любом агрегатном состоянии, водные растворы смачивателей, пены

    Уголь в порошке

    Распыленная вода, водные растворы смачивателей, пены

    Уксусная кислота

    Распыленная вода, ОПС, пены, инертные газы

    Фосфор красный и желтый формальдегид

    Вода, ОПС, мокрый песок, пены, инертный газ, ингибиторы

    Инертные газы

    Водяной пар, инертные газы

    Целлулоид

    Обильное количество воды, ОПС

    Целлофан

    Цинковая пыль

    ОПС, песок, ингибиторы, негорючие газы

    Вода, водные растворы смачивателей, пены

    Электрон

    ОПС, сухой песок.

    Инертные газы, ингибиторы

    Эфир этиловый

    Пены, ОПС, ингибиторы

    Эфир диэтиловый (серный)

    Инертные газы

    Ядохимикаты

    Тонкораспыленная вода

    Гексохлоран 16 % ДНОК 40 %

    Обильное количество воды, не допускается высыхание препарата

    Дихлорэтан (технический)

    Тонкораспыленная вода, пены

    Карбофос 30 %

    Тонкораспыленная вода, водные растворы смачивателей, пены

    Метафос 30 %

    Вода, пены

    Метилмеркаптофос 30 %

    Распыленная вода, пены

    Фозалон 35 %

    ОПС, пены, инертные газы

    Хлорпикрин

    Пены, водные растворы смачивателей

    Хлорофос технический 80 %

    Вода, пены

    Распыленная вода, пены

    Пены, ОПС

    Бутифос 70 %

    Тонкораспыленная вода

    2,4–Д бутиловый эфир 34...72 %

    Тонкораспыленная вода, пены, инертные газы

    Дихлоральмочевина 50 %

    Линурон 50 %

    Суркопур 36 %

    ОПС, тонкораспыленная вода, пены

    Симазин 50 %

    Тонкораспыленная вода, пены

    Цианамид кальция

    ОПС, песок, инертные газы

    Как огнетушащее средство, вода плохо смачивает твердые материалы из-за высокого поверхностного натяжения (72,8-103 Дж/м 2), что препятствует быстрому распределению её по поверхности, прониканию в глубь горящих твердых материалов и замедляет охлаждение.

    Для уменьшения поверхностного натяжения и увеличения смачивающей способности в воду добавляют поверхностно-активные вещества (ПАВ). На практике используют растворы ПАВ (смачивателей), поверхностное натяжение которых в 2 раза меньше, чем у воды. Применение растворов смачивателей позволяет уменьшить расход воды при тушении пожаров на 35-50%; снизить время тушения на 20-30%, что обеспечивает тушение одним и тем же объемом огнетушащего вещества на большей площади.

    Воздушно-механическая пена (ВМП) получается смешением в пенных стволах или генераторах водного раствора пенообразователя с воздухом. ВМП обладает необходимой стойкостью, дисперсностью, вязкостью, охлаждающими и изолирующими свойствами, которые позволяют использовать её для тушения твердых материалов, жидких веществ и осуществления защитных действий, для тушения пожаров по поверхности и объемного заполнения горящих помещений (пена средней и высокой кратности). Для подачи пены низкой кратности применяют воздушно-пенные стволы СВП (CBПЭ), а для подачи пены средней и высокой кратности – пеногенераторы ГПС.

    Классификация пенообразователей.

    Пенообразователи и пены различаются:

      по назначению,

      по структуре,

      по химической природе поверхностно-активного вещества и по способу образования.

    По природе основного поверхностно-активного вещества:

      протеиновые (белковые);

      синтетические углеводородные;

    По способу образования:

      химические (конденсационные);

      воздушно-механические;

      барботажные;

    Струйные.

    По назначению пенообразователи различают:

      общего назначения;

      целевого назначения;

      пленкообразующие.

    По структуре пены подразделяются на высокодисперсные и грубодисперсные.

    По кратности:

      пены низкой кратности и пеноэмульсии;

      пены средней кратности;

      пены высокой кратности.

    Отношение объема пены V 1 к объему жидкости в пене V o называется кратностью К: K = V 1 / V 0 .

    Пенообразователи целевого назначения отличаются определенной направленностью состава. Например, образующие очень устойчивую пену, длительно не разрушающуюся на открытом воздухе.

    Для тушения спиртов и водорастворимых органических соединений используют пенообразователи, в состав которых входят природные или синтетические полимеры, которые коагулируют при смешении водного раствора с растворителем. В результате коагуляции на поверхности органического растворителя образуется толстая полимерная пленка, которая механически защищает пену от контакта с растворителем.

    Кратность пены. В зависимости от величины кратности пены разделяют на четыре группы:

      пеноэмульсий, К < 3;

      пены низкой кратности, 3 < К < 20;

      пены средней кратности, 20 < К < 200;

      пены высокой кратности, К > 200.

    В практике тушения пожаров используются все четыре вида пены, которые получают различными способами и устройствами:

      пеноэмульсий – соударением свободных струй раствора;

      пены низкой кратности – пеногенераторами, в которых эжектируемый воздух перемешивается с раствором пенообразователя;

      пена средней кратности образуется на металлических сетках эжекционных пеногенераторов;

      пена высокой кратности получается на генераторах с перфорированной поверхностью тонких металлических листов или на специальном

      оборудовании, в результате принудительного наддува воздуха в пеногенератор от вентилятора.

    Огнетушащие порошковые составы (ОПС) являются универсальными и эффективными средствами тушения пожаров при сравнительно незначительных удельных расходах. ОПС применяют для тушения горючих материалов и веществ любого агрегатного состояния, электроустановок под напряжением, металлов, в том числе металлоорганических и других пирофорных соединений, не поддающихся тушению водой и пенами, а также пожаров при значительных минусовых температурах. Они способны оказывать эффективные действия на подавление пламени комбинированно: охлаждением (отнятием теплоты), изоляцией (за счет образования пленки при плавлении), разбавлением газообразными продуктами разложения порошка или порошковым облаком, химическим торможением реакции горения.

    Огнетушащее действие огнетушащих порошковых составов заключается, в основном, в изоляции горящей поверхности от воздуха, а при объемном тушении – в ингибирующем действии порошков, связанным с обрывом цепей реакции горения.

    В качестве основных компонентов в рецептуре огнетушащих порошков используются три класса веществ: фосфорно-аммонийные соли, бикарбонаты и хлориды щелочных металлов (Na и К ). Все это хорошо растворимые в воде соли с ионной кристаллической структурой.

    Огнетушащие порошки, основой которых является фосфорно-аммонийные соли применяются для тушения пожаров классов А, В, С, Е; бикарбонатные порошки – для В, С, Е и хлоридные порошковые составы – для В, С, Е, Д.

    Таблица 39

    Характеристика наиболее распространенных огнетушащих порошковых составов

    Механическая смесь бикарбоната натрия с химически осажденным мелом (углекислым кальцием), тальком и аэросилом АМ-1-300 (кремнийорганическая добавка).

    Бывают трех марок – А, Б, В:

    Марка А : 97...98"% бикарбоната натрия и 1,5...2,5 % аэросила;

    Марка Б : 91...94 % бикарбоната натрия, 4...6 % углекислого кальция и 1,5...2,5 % аэросила;

    Марка В . 91...94 % бикарбоната натрия, 1,5...2,5 % аэросила и 4–6 % талька

    Для тушения ЛВЖ, ГЖ, растворителей, сжиженных газов, газовых фонтанов, электроустановок под напряжением до 1000 В. Можно применять для пожаротушения в сочетании с огнетушащей пеной

    99 % фосфорноаммонийвые соли и 1 % аэросила АМ-1-300

    Для тушения твердых горючих материалов (древесины, бумаги, пластмасс, угля и др.), нефтепродуктов, сжиженных газов, газовых фонтанов и электроустановок под напряжением до 1000 В

    Смесь карбоната натрия с графитом и стеаратов тяжелых металлов: 95...96 % соды, 1... ...1,5 % графита, улучшающего текучесть; 0.5...3 % стеарата металла (магния, цинка, кальция)

    Для тушения горящих щелочных металлов и их сплавов

    Мелкозернистый силикагель марки МСК (50 %). насыщенный хладон И4В2 (50 %)

    Для тушения многих горючих веществ, в том числе пирофорных, кремнийорганических и алюминийорганических соединений, а также гидридов металлов

    Таблица 40

    Основные свойства огнетушащих порошков

    Марка порошка

    Основной компонент

    Область применения (классы пожаров)

    Огнетушащая способность, кг/м 2

    Бикарбонат натрия

    Диаммонит фосфат

    Карбонат натрия

    Смесь хлоридов калия и натрия

    Силикогель, насыщенный хладоном 114В2

    Д (металлорганические соединения, гидриды металлов)

    Графит, вспучивающийся при нагреве

    Д (сплав калия и натрия)

    Графит с пониженной плотностью

    Д (для натрия и лития)

    Огнетушащие средства разбавления понижают концентрацию реагирующих веществ ниже пределов, необходимых для горения. В результате уменьшается скорость реакции горения, скорость выделения тепла, снижается температура горения. При тушении пожаров разбавляют воздух, участвующий в горении, или горючее вещество, поступающее в зону горения. Воздух разбавляют в относительно замкнутых помещениях (сушильных камерах, трюмах судов и т.п.), а также при горении отдельных установок или жидкостей на небольшой площади при свободном доступе воздуха.

    Огнетушащая концентрация это объемная доля огнетушащего вещества в воздухе, прекращающая горение. Наиболее распространены диоксид углерода, водяной пар, азот и тонкораспыленная вода.

    Газовые огнетушащие составы условно делятся на нейтральные (негорючие) газы – НГ и химически активные ингибиторы – ХАИ.

    К нейтральным газам относятся инертные газы аргон, гелий, а также азот и двуокись углерода. Применяются смеси СО 2 с инертными газами.

    Нейтральные газы (НГ):

    К химически активным ингибиторам, называемым "хладонами" или "фреонами", относятся органические соединения с низкой теплотой испарения, в молекулах которых содержатся атомы галоидов, таких как бром или хлор.

    Хладон – это общее название галогенозамещённых углеводородов, причем для их обозначения применяют численное обозначение, характеризующее число и последовательность атомов углерода, фтора, хлора, брома, называемое хладоновым номером, например, CF 3 Br обозначают числом 1301. Огнетушащая способность хладона, как правило, тем выше, чем больше атомов брома, фтора и хлора в молекуле.

    Таблица 41

    Основные физико-химические свойства галоидоуглеводородов и составов на их основе, используемых при тушении пожаров

    Условное обозначение

    Компоненты, %

    Плотность

    Температура, °С

    жидкости, кг/м 3

    паров по воздуху

    Замерзания

    Бромистый этил – 100

    Бромистый этил – 70

    Диоксид углерода – 30

    Бромистый этил – 97

    Диоксид углерода – 3

    Бромистый метилен – 80

    Бромистый этил – 20

    Бромистый этил – 70

    Бромистый метилен – 30

    Бромистый этил – 84

    Тетрафтордибромэтан – 16

    Бромистый этил – 73

    Тетрафтордибромэтан – 27

    Хладон 114В2

    Тетрафтордибромэтан– 100

    Хладон 13В1

    Трифторбромметан – 100

    Таблица 42

    С 2 Н 2 В

    СО 2 (жидкость)

    C 4 F 4 Br 2

    СН 2 В 2



    Загрузка...